| 研究生: |
陳泱寯 Chen, Yang-Jun |
|---|---|
| 論文名稱: |
一個七位元每秒取樣五百六十億次時間交錯式時域類比數位轉換器 A 7-bit 56GS/s Time-interleaved Time Domain ADC |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 時域類比數位轉換器 、時間交錯式 、電壓時間轉換器 、時間數位轉換器 、多相時脈產生器 、輸入緩衝器 |
| 外文關鍵詞: | Time-Domain Analog-to-Digital Converter (TD-ADC), Time-Interleaved (TI), Voltage-to-Time Converter (VTC), Time-to-Digital Converter (TDC), Multi-phase Clock Generator, Input Buffer |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一款每秒取樣五百六十億次時間交錯式時域類比數位轉換器,該電路整合了輸入緩衝器與八相時脈產生器。為了極小化取樣時脈抖動,本設計採用了注入技術。每個子通道皆採用時域類比數位轉換器架構,由電壓時間轉換器與時間數位轉換器組成,單一通道取樣率可達每秒七十億次。因此,僅需八個子通道即可達成總計 56 GS/s 的取樣速率。得益於較低的交錯因子,以及時域類比數位轉換器中基於主動元件量化技術的面積優勢,本設計在展現極具競爭力的晶片面積之餘,仍保有與逐漸趨近式架構相當的功耗效率。
本晶片採用 TSMC N16 FFC+ 製程設計,核心面積僅為0.06 mm²。在 0.8 V 供應電壓與每秒取樣五百六十億次取樣率下,功耗為126毫瓦。實驗結果顯示,在低輸入頻率下之信號雜訊失真比為26.36 dB;當輸入頻率達20 GHz時,受殘餘時間偏移影響,SNDR為11.24 dB。對應之能量效率優值為751 fJ/conv-step。
This thesis presents a 56 GS/s time-interleaved (TI) time-domain ADC (TD-ADC), which integrates an input buffer and an eight-phase clock generator. To minimize sampling clock jitter, an injection-locking technique is employed. Each sub-channel utilizes a TD-ADC architecture consisting of a Voltage-to-Time Converter (VTC) and a Time-to-Digital Converter (TDC), capable of reaching a sampling rate of 7 GS/s. Consequently, the aggregate 56 GS/s rate is achieved with only eight sub-channels. Benefiting from the reduced interleaving factor and the area-efficient nature of active-component-based quantization in TD-ADCs, this design demonstrates a competitive area footprint while maintaining power efficiency comparable to SAR-based architectures. The proof-of-concept chip was fabricated in the TSMC 16nm (N16) FFC+ process, occupying a core area of only 0.06 mm2. Under a 0.8 V supply at 56 GS/s, the ADC consumes 125 mW. Experimental results show an SNDR of 26.36 dB at low input frequencies. At a 20 GHz input frequency, the SNDR is 11.24 dB due to residual timing skew. The corresponding Figure of Merit is 751 fJ/conv-step.
[1] T. Ali et al., "A 460mW 112Gb/s DSP-Based Transceiver with 38dB Loss Compensation for Next-Generation Data Centers in 7nm FinFET Technolog," presented at the 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020.
[2] J. Im et al., "A 112-Gb/s PAM-4 Long-Reach Wireline Transceiver Using a 36-Way Time-Interleaved SAR ADC and Inverter-Based RX Analog Front-End in 7-nm FinFET," IEEE Journal of Solid-State Circuits, vol. 56, no. 1, pp. 7–18, 2021, doi: 10.1109/jssc.2020.3024261.
[3] D. Pfaff et al., "7.3 A 224Gb/s 3pJ/b 40dB Insertion Loss Transceiver in 3nm FinFET CMOS," presented at the 2024 IEEE International Solid-State Circuits Conference (ISSCC), 2024.
[4] B. Murmann, ""ADC Performance Survey 1997-2025," [Online]. Available: https://github.com/bmurmann/ADC-survey.."
[5] A. Whitcombe et al., "22.3 A 76mW 40GS/s 7b Time-Interleaved Hybrid Voltage/Time-Domain ADC with Common-Mode Input Tracking," presented at the 2024 IEEE International Solid-State Circuits Conference (ISSCC), 2024.
[6] M. Zhang, Y. Zhu, C.-H. Chan, and R. P. Martins, "An 8-Bit 10-GS/s 16× Interpolation-Based Time-Domain ADC With <1.5-ps Uncalibrated Quantization Steps," IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3225–3235, 2020, doi: 10.1109/jssc.2020.3012776.
[7] Q. Chen, Y. Liang, C. C. Boon, and Q. Liu, "17.8 A Single-Channel 10GS/s 8b>36.4d8 SNDR Time-Domain ADC Featuring Loop-Unrolled Asynchronous Successive Approximation in 28nm CMOS," presented at the 2023 IEEE International Solid- State Circuits Conference (ISSCC), 2023.
[8] J. Liu, M. Hassanpourghadi, and M. S.-W. Chen, "A 10GS/s 8b 25fJ/c-s 2850um2 Two-Step Time-Domain ADC Using Delay-Tracking Pipelined-SAR TDC with 500fs Time Step in 14nm CMOS Technology," presented at the 2022 IEEE International Solid- State Circuits Conference (ISSCC), 2022.
[9] Y. Zhao and B. Razavi, "Phase Noise Integration Limits for Jitter Calculation," presented at the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), 2022.
[10] A. S. Yonar et al., "An 8-bit 56GS/s 64x Time-Interleaved ADC with Bootstrapped Sampler and Class-AB Buffer in 4nm CMOS," presented at the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2022.
[11] Z. Wang, Y. Zhang, Y. Onizuka, and P. R. Kinget, "Multi-Phase Clock Generation for Phase Interpolation With a Multi-Phase, Injection-Locked Ring Oscillator and a Quadrature DLL," IEEE Journal of Solid-State Circuits, vol. 57, no. 6, pp. 1776–1787, 2022, doi: 10.1109/jssc.2021.3124486.
[12] B. Razavi, "Design Considerations for Interleaved ADCs," IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1806–1817, 2013, doi: 10.1109/jssc.2013.2258814.
[13] L. Kull et al., "A 90GS/s 8b 667mW 64×Interleaved SAR ADC in 32nm Digital SOI CMOS," presented at the 2014 IEEE International Solid- State Circuits Conference (ISSCC), 2014.
[14] L. Kull et al., "A 24–72-GS/s 8-b Time-Interleaved SAR ADC With 2.0–3.3-pJ/Conversion and >30 dB SNDR at Nyquist in 14-nm CMOS FinFET," IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3508–3516, 2018, doi: 10.1109/jssc.2018.2859757.
[15] K. Sun, G. Wang, Q. Zhang, S. Elahmadi, and P. Gui, "A 56-GS/s 8-bit Time-Interleaved ADC With ENOB and BW Enhancement Techniques in 28-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 821–833, 2019, doi: 10.1109/jssc.2018.2884352.
[16] Y. Zhang, M. Zhang, Z. Wu, Y. Zhu, R. P. Martins, and C.-H. Chan, "24.5 A 72GS/s 9b Time-Interleaved Pipeline-SAR ADC Achieving 55.3/49.3dB SFDR at 20GHz/Nyquist Inputs in 16nm FinFET," presented at the 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025.
[17] J. Cao et al., "A Transmitter and Receiver for 100Gb/s Coherent Networks with Integrated 4×64GS/s 8b ADCs and DACs in 20nm CMOS," presented at the 2017 IEEE International Solid- State Circuits Conference (ISSCC), 2017.
[18] L. Kull and D. Luu, "Measurement of high-speed ADCs," presented at the 2017 IEEE Custom Integrated Circuits Conference (CICC), 2017.