| 研究生: |
莊文宇 Chuang, Wen-Yu |
|---|---|
| 論文名稱: |
以輸入修正法抑制行進液體容器內之表面波動振幅 Amplitude suppression of surface wave in a moving liquid container by input shaping |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 自由液面 、輸入修正法 、液面晃動 、殘餘振動抑制 |
| 外文關鍵詞: | Free surface, Input shaping, Sloshing, Residual vibration suppression |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
封閉容器的自由液面晃動問題,在業界廣泛被討論,許多學者探討加工製造與燃料儲存問題時,皆會考慮到自由液面的晃動。自由液面晃動為一個複雜、非線性問題。本文想模擬出行進容器內的液面運動模擬分析,因此我們需要對整個容器做一些適當的基本假設,進而模擬出水波表面發生的變化。運輸帶上運動的載體會因運動行進間不同的加減速運動、慣性力產生不同的液面噴濺情況。
本文使用數值計算,利用有限體積法去模擬行進容器的自由液面晃動。並且想要有效的去抑制表面的晃動,但大多數的抑制晃動的方法都需要使用到感應器,然而輸入修正法不需要感應器就能有效抑制液面的殘餘震動,因此本文使用四種不同的輸入修正法,比較容器在行進過程中和靜止後的表面振盪減少。接著更進一步利用容器液體的質心位置求出質心軌跡搖擺範圍,並且與兩壁面的液面最大值找出關聯性。試圖找出最小幅度的噴濺振幅,並找到最有效率的運輸過程。
The sloshing problem of the free surface of a closed container has been widely discussed in the industry. Many scholars consider the sloshing of the free surface when discussing the problems of manufacturing and fuel storage. Free surface sloshing is a complex and nonlinear problem. This article wants to simulate the simulation analysis of the liquid surface movement in the traveling container, so we need to make some appropriate basic assumptions about the entire container, and then simulate the changes in the surface of the water wave. The moving carrier on the conveyor belt will produce different liquid surface splashes due to different acceleration and deceleration motions and inertial forces during the movement.
This paper uses numerical calculations and finite volume method to simulate the sloshing of the free liquid surface of the traveling container. And want to effectively suppress the sloshing of the surface, but most methods of suppressing sloshing require the use of sensors, but the input shaping does not require a sensor to effectively suppress the residual vibration of the liquid surface, so this article uses four different input-shaping schemes compares the reduction of the surface oscillation of the container during travel and after it is stationary. Then further use the center of mass of the container liquid to find the swing range of the center of mass trajectory, and finally find the correlation with the maximum value of the liquid level on the two walls. Try to find the smallest splash amplitude and find the most efficient transportation process.
[1] K. Terashima and G. Schmidt, ‘‘Motion control of a cartbased container considering suppression of liquid oscillations,’’ IEEE International Symposium on Industrial Electronics, pp. 275-280, 1994.
[2] T. Acarman and U. Ozguner, “Rollover prevention for heavy trucks using frequency shaped sliding mode control,” Vehicle System Dynamics, 44(10), pp. 737-762, 2006.
[3] N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system vibration,” Journal of Dynamic Systems, Measurement, and Control, 112, pp. 76-82, 1990.
[4] W. Singhose, “Command shaping for flexible systems: A review of the first 50 years,” International Journal of Precision Engineering and Manufacturing, 10(4), pp. 153-168, 2009.
[5] C. J. Chen, ‘‘Measurement of the Surface Profile of Sloshing Liquids by Applying 3-D Digital Image Correlation Technique,’’ Master’s Thesis, National Sun Yat-sen University, 2017.
[6] H. N. Abramson, G. E. Ransleben Jr, ‘‘Simulation of Fuel Sloshing Characteristics in Missile Tanks by use of Small Models,’’ ARS Journal, Vol. 30, No. 7, pp. 603-612, 1960.
[7] H. N. Abramson, W. Chu, and L. R. Graza, ‘‘Liquid sloshing in spherical tanks,’’
AIAA Journal, vol. 1, pp. 384-389, 1963.
[8] O. Valtinsen, ‘‘A nonlinear theory of sloshing in rectangular tanks,’’ Journal of Ship Reasearch, vol. 18, pp. 224-241, 1974.
[9] A. Slibar, H. Ttoger, ‘‘The Steady State Behaviour of Tank Trailer System Carrying Rigid or Liquid Cargo,’’ VSD-IUTAM Symposium Dynamics of Vehicles on Roads and Trucks, pp. 256-264, 1997.
[10] A. Veletsos, ‘‘Seismic response and design of liquid storage tanks,’’ Guidelines for the seismic design of oil and gas pipeline systems, pp. 255-370, 1984.
[11] N. Tokuda and N. Sakutai ‘‘Sloshing Analysis Method Using Existing FEM Structure Analysis Codes.’’ The Journal of Pressure Vessel Technology, pp. 268-272, 1995.
[12] H. N. Abramson, ‘‘The Dynamic behavior liquids in moving containers, with applications to space vehicle technology,’’ National Aeronautics and Space Administration, 1996.
[13] W. Chen, M. A. Haroun and F. Liu, “Large amplitude liquid sloshing in seismically excited tanks,’’ Earthquake engineering & structural dynamics, vol. 25, pp. 653-669, 1996.
[14] J. L. Ortiz and A. A. Barhorst, ‘‘Large-Displacement Nonlinear Sloshing in 2-D Circular Rigid Containers,’’ International Journal for Numerical Method in Engineering, 41(2), pp. 195-210, 1998.
[15] H. Kazem and S. Mehrpouya, “Estimation of Sloshing Wave Height in Broad Cylindrical Oil Storage Tanks Using Numerical Methods,’’ Journal of Structural Engineering and Geo-Techniques, vol. 2, pp. 55-595, 2012.
[16] C. F. Cutforth, and L. Y. Pao, “Adaptive Input Shaping for Maneuvering Flexible Structures,” Automatica, 40, pp. 685-693, 2004.
[17] J. Feddema, C. Dohrmann, G. Parker, R. Robinett, V. Romero and D. Schmitt, “A comparison of maneuver optimization and input shaping filters for robotically controlled slosh-free motion of an open container of liquid,” Proceedings of the 1997 American Control Conference, 3, pp. 1345-1349, 1997.
[18] K. Terashima and K. Yano, “Sloshing analysis and suppression control of tilting-type automatic pouring machine,” Control Engineering Practice, 9, pp. 607-620, 2001.
[19] B. Pridgen, K. Bai and W. Singhose, ‘‘Slosh Suppression by Robust Input Shaping,” IEEE Conference on Decision and Control, 30332-0405, 2010.
[20] W. Singhose, L. Porter, M. Kenison and E. Kriikku, “Effects of hoisting on the input shaping control of gantry cranes,” Control Engineering Practice 8, pp. 1159-1165, 2000.
[21] J. Shan, H. T. Liu and D. Sun, “Modified input shaping for a rotating single-link flexible manipulator,” The Journal of Sound and Vibration 285, pp. 187-207, 2005.
[22] W. E. Singhose, “Command generation for flexible systems,” Ph.D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 1997.
[23] T. S. Yang, K. S. Chen, C. C. Lee and J. F. Yin, “Suppression of motion-induced vibration of a cantilever beam by input shaping”. The Journal of Engineering Mathematics, 54, pp. 1-15, 2006.
[24] T. S. Yang, K. S, Chen, C. C. Lee and I. Hu, ‘‘Suppression of motion-induced residual longitudinal vibration of an elastic rod by input shaping,’’ Journal of Engineering Mathematics, pp. 8-9, 2007.