| 研究生: |
藍恭傑 Lan, Kung-Chieh |
|---|---|
| 論文名稱: |
應用負介電泳效應捕捉結構進行單細胞控制與阻抗量測之研究 Single-cell Trapping and Impedance Measurement Utilizing Electrothermal Effect Quadrupole Structure and Negative Dielectrophoretic Microwell Electrodes |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 單細胞捕捉 、細胞阻抗 、細胞操控 、負介電泳 、電熱效應 |
| 外文關鍵詞: | Single-cell trap, Cell impedance, Cell manipulation, Negative dieletrophoresis (nDEP), electrothermal effect |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單一細胞的操控一直是許多生物工程上的核心技術,此種核心技術對於許多更進一步的研究都是必要的,其中關於細胞阻抗分析的研究對於了解細胞的生理情形是一種很有效率的生物量測技術。因此,本研究將單細胞操縱與捕捉系統和量測技術做一個整合。本論文設計了捕捉和量測電極結合的生物晶片,利用電熱和負介電泳效應產生的控制方式將細胞或粒子準確地移動至量測電極再進行阻抗量測。負介電泳和電熱效應是電性操作方法中的一種,而且能夠與細胞捕捉後的檢測、分析等技術作結合。在過去研究中的微型捕捉電極在此研究中分開而成為一組量測電極。除此之外,為了更精準地將細胞固定在量測電極上,結構的尺寸和形狀必須更嚴謹的設計。我們利用模擬和分析找出最適用的結構參數,並且透過分析找出結構參數和捕捉範圍的關係讓此結構可更一步延伸使用至不同大小的細胞。我們亦透過反覆抓取的阻抗量測分析以驗證定位的準確度,其誤差低於3%,這結果也符合預期證明了此結構定位的可靠性。最後,此結構也實現在HeLa細胞的捕捉和量測。
The research of individual cells is an important technique in many kinds of biological study. In addition, cell impedance analysis is an effective way of biological measurement. Therefore, integrating the measurement technique into the single-cell trapping structure is the aim of this work. This study presents a cell manipulation and measurement microchip to achieve a precise positioning which uses the Alternating current electrokinetics (ACET) and negative dielectrophoresis (nDEP) force to move the particle and cell on the measurement electrodes. ACET and DEP are the electrical methods to manipulate particle, and can be easily combined with subsequent analyses based on electric fields. The microwell in the prior study is separated into two parts and regarded as the measurement electrodes. Besides, the original structure has been modified for precise positioning. Numerical simulations and analyses are conducted to compute and analyze the effects of the parameters in the structure. By means of simulations and analyses, the optimum structure for the cell is presented. In addition, taking the advantage of analyses can interpret the capture range so that the structure is selective for cells of different sizes. To demonstrate the precision of positioning, the experiment capturing and measuring the particle repeatedly was implemented and the result showed the function of positioning is lower than 3% and reliable. Finally, the structure was applied to trap and measure the HeLa cell.
[1] S. Yang and J. Cao, "Two-Event Echos in Single-Molecule Kinetics: A Signature of Conformational Fluctuations," Journal of Chemical Physics, vol. 105, pp. 6536-6549, 2001.
[2] G. K. Schenter, H. P. Lu, and X. S. Xie, "Statistical Analyses and Theoretical Models of Single-Molecule Enzymatic Dynamics," Journal of Chemical Physics, vol. 103, pp. 10477-10488, 1999.
[3] P. Fortina, S. Surrey, and Lj. Kricka, “Molecular diagnostics: Hurdles for clinical implementation,” Trends in Molecular Medicine, vol. 8, pp. 264-266, 2002.
[4] P. M. Goodwin, R. L. Affleck, W. P. Ambrose, J. N. Demas, J. H. Jett, J. C. Martin, L. J. Reha-Krantz, D. J. Semin, J. A. Schecker, M. Wu, and R. A. Keller, "Progress toward DNA sequencing at the single molecule level," Experimental Biomolecular Physics, vol. 41, pp. 279-294, 1995.
[5] James MUYS, M. M. ALKAISI, J. J. EVANS1 and J. NAGASE, “Biochip- Cellular analysis by atomic force microscopy using dielectrophoretic manipulation,” Japanese Journal of Applied Physics, vol. 44, No. 7B, pp. 5717-5723, 2005.
[6] R.M. Hochmuth, “Micropipette aspiration of living cells,” Journal of Biomechanics, vol. 33, pp.15-22, 2000.
[7] A. Revzin, R. G. Tompkins and M. Toner, Langmuir, “Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes,” Journal of Lab on a Chip, vol. 5, pp. 30-37, 2005.
[8] D. Di Carlo, N. Aghdam and L. P. Lee, “Microfluidic self-assembly of tumor spheroids for anticancer drug discovery,” Biomedical Microdevices, vol. 10, pp. 197-202, 2008.
[9] L. S. Jang, and M. H. Wang, “Microfluidic device for cell capture and impedance measurement,” Biomedical Microdevices, vol. 9, pp. 737-743, 2007.
[10] Curtis, Jennifer E., Koss, Brain A., Grier, and David G. "Dynamic holographic optical tweezers," Optics Communication, vol. 207, pp.169-175, 2002.
[11] A. Ashkin et al., “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature, vol. 348, pp. 346-348, 2000.
[12] Liz Y. Wu, Dino Di Carlo, and Luke P Lee, “Microfluidic self-assembly of tumor spheroids for anticancer drug discovery,” Biomedical Microdevices, vol. 10, pp. 197-202, 2008.
[13] B. Le Pioufle , P. Surbled, H. Nagai, Y. Murakami, K.S. Chun, E. Tamiya, and H. Fujita, “Living cells captured on a bio-microsystem devoted to DNA injection,” Materials Science and Engineering, vol. C 12, pp. 77-81, 2000.
[14] B. M. Taff and J. Voldman, “A scalable addressable positive-dielectrophoretic. cell-sorting array,” Analytical Chemistry, vol. 77, pp. 7976-7983, 2005.
[15] T. P. Hunt, and R. M. Westervelt, “Dielectrophoresis tweezers for single cell manipulation,” Biomed Microdevices, vol. 8, pp. 227-230, 2006.
[16] Junya Suehiro, Akio Ohtsubo, Tetsuji Hatano, and Masanori Hara, “Selective detection of bacteria by a dielectrophoretic impedance measurement method using an antibody-immobilized electrode chip,” Sensors and Actuators B, vol. 119, pp. 319-326, 2006.
[17] Ramos, A., Morgan, H., Green, N.G., and Castellanos, A., “AC electrokinetics: a review of forces in microelectrode structures,” Journal of Physics D: Applied Physics, vol. 31, pp. 2338-2353, 1998.
[18] Pohl, Herbert A., and Pollock, Kent, “Electrode geometries for various dielectrophoretic force laws,” Journal of Electrostatics, vol. 5, pp. 337-342, 1978.
[19] Bakewell DJG, Hughes MP, Milner JJ, and Morgan H, “Dielectrophoretic manipulation of avidin and DNA,” Proceedings 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998
[20] Morgan H, Hughes MP, and Green NG “Separation of Sub-Micron Particles by Dielectrophoresis,” Biochip Journal, vol. 77, pp. 516-525, 1999.
[21] J. Yang, Y. Huang, X. B.Wang, F. F. Becker, and P. R. C. Gascoyne, “Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation,” Biophysical Journal, vol. 78, no. 5, pp. 2680-2689, 2000.
[22] T.B. Jones, “Electromechanics of Particles,” Cambridge University Press, 1995.
[23] Erwan Lennon1, Serge Ostrovidov1, Vincent Senez2 and Teruo Fujii1, “Dielectrophoresis, cell culture, and electrical impedance spectroscopy applied to adherent cells in a single biochip,” Proceedings of International Conference on Microtechrologies in Medicine and Biology, pp. 165-168, 2006.
[24] Charlotte C. Kwong, Nan Li, and Chih-Ming Ho, “Studies of deionization and impedance spectroscopy for blood analyzer,” Proceedings of SPIE - The International Society for Optical Engineering, pp. 60030N, 2005.
[25] Tjitske Heida, Wim L. C. Rutten, and Enrico Marani, “Dielectrophoretic trapping of dissociated fetal cortical rat neurons,” IEEE Transactions on biomedical engineering, vol. 48, no. 8, 2001.
[26] Zhe Yu, Guangxin Xiang, Liangbin Pan,Lihua Huang, Zhongyao Yu, Wanli Xing,
and Jing Cheng, “Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips,” Biomedical Microdevices, pp. 311-324, 2004.
[27] Joel Voldman, Rebecca A. Braff, Mehmet Toner, Martha L. Gray, and Martin A. Schmidt, “Holding forces of single-particle dielectrophoretic traps,” Biophysical Journal, vol. 80, pp. 531-541, 2001.
[28] Schnelle, T., R. Hagedorn, G. Fuhr, S. Fiedler, and T. Muller, “3-Dimensional electric-field traps for manipulation of cells: calculation and experimental verification,” Biochimica et Biophysica Acta, vol. 1157, pp.127-140. 1993.
[29] Manaresi, N., A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, and R. Guerrieri, “A CMOS chip for individual cell manipulation and detection,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2297-2305, 2003.
[30] Tomoyuki Yasukawa, Masato Suzuki, Takashi Sekiya, Hitoshi Shiku, Tomokazu Matsue, “Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis,” Biosensors and Bioelectronics, vol. 22, pp. 2730-2736, 2007.
[31] Voldman, J., M. Toner, M. L. Gray, and M. A. Schmidt, “Design and analysis of extruded quadrupolar dielectrophoretic traps,” Journal of Electrostatics, vol. 57, pp. 69-90, 2003.
[32] Adam Rosenthal, and Joel Voldman, “Dielectrophoretic traps for single-particle patterning,” Biophysical Journal, vol. 88, pp. 2193-2205, 2005.
[33] Green, N.G., Ramos, A., Gonzalez, A., Castellanos, A., and Morgan, H., “Electrothermally induced fluid flow on microelectrodes,” Journal of Electrostatics, vol. 53, pp. 71-87, 2001.
[34] Gonzalez, A., Ramos, A., Morgan, H., Green, N., and Castellanos, A., “Electrothermal flows generated by alternating and rotating electric fields in Microsystems,” Journal of Fluid Mechanics, vol. 564, pp. 415-433, 2006.
[35] A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green and H. Morgan, “Electrohydrodynamics and dielectophoresis in microsystems: saling laws,” Journal of Physics D: Applied Physics, vol. 36, pp. 2584-2579, 2003.
[36] M. Lian, N. Islam and J. Wu, “AC electrothermal manipulation of conductive fluids and particles for lab-chip applications”, IET Nanobiotechnol, vol. 1 no. 3, pp. 36–43. 2007
[37] Jang, L. S., Huang, P. H,. Lan, K. C., “Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes”, Biosensors and Bioelectronics, vol. 24, pp. 3637-3644, 2009.
[38] T. Heida, W. L. C. Rutten, E. Marani, “Understanding dielectrophoretic trapping of neuronal cells: modeling electric field, electrode-liquid interface and fluid flow”, Journal of Physics D: Applied Physics, 2002, 35, 1592-1602.
[39] Adam Rosenthal, and Joel Voldman, “Dielectrophoretic traps for single-particle patterning,” Biophysical Journal, vol. 88, pp. 2193-2205, 2005.
[40] K. H. Gilchrist, L. Giovangrandi, and G. T. A. Kovacs, “Analysis of Microelectrode-Recorded Signals from a Cardiac Cell Line as a Tool for Pharmaceutical Screening,” The 11th International Conference on Solid-State Sensors and Actuators, pp. 10-14, 2001.
[41] M. Niikura, A. Maeda, T. Ikegami, M. Saijo, I. Kurane, and S. Morikawa, “Modification of endothelial cell functions by Hantaan virus infection: prolonged hyper-permeability induced by TNF-alpha of hantaan virus-infected endothelial cell monolayers,” Archives of Virology, vol. 149, pp. 1279-1292, 2004.
[42] K. H. Gilchrist, L. Giovangrandi, R. H. Whittington, and G. T. A. Kovacs, “Sensitivity of cell-based biosensors to environmental variables,” Biosensors & Bioelectronics, vol. 20, pp. 1397-1406, 2005.
[43] L. Ye, T.A. Martin, C. Parr, G.M. Harrison, R.E. Mansel, W.G. Jiang, “Biphasic effects of 17-β-estradiol on expression of occludin and transendothelial resistance and paracellular permeability in human vascular endothelial cells”, Journal of Cell. Physiology, vol. 196, pp. 362–369, 2003.
[44] I. Giaever and C. R. Keese, “TOXIC ? CELLS CAN TELL,” Chemtech, vol. 22, pp. 116-125, 1992.
[45] H. A. Pohl, “The motion and Precipitation of Suspensoids in Divergent Electric Fields,” Journal of Applied Physics, vol. 22, pp.869-871, 1951.
[46] Pecorelli, S., Favalli, G., Zigliani, L., Odicino, and F., “Cancer in women,” International Journal of Gynecology & Obstetrics, vol. 82(3), pp. 369-379, 2003.
[47] Sharrer, T., “HeLa" Herself,” The Scientist, vol. 20, no. 7, pp. 22, 2006.
校內:2013-02-22公開