簡易檢索 / 詳目顯示

研究生: 駱信昌
Lo, Hsin-Chang
論文名稱: 中風患者使用功能性電刺激輔助下肢驅動輪椅之開發與評估
Development and Evaluation of Functional Electrical Stimulation (FES)-assisted Leg-cycling Wheelchair for Stroke Patients
指導教授: 蔡昆宏
Tsai, Kuen-Horng
蘇芳慶
Su, Fong-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 111
中文關鍵詞: 耗能成本肌肉張力操控性功能性電刺激中風下肢驅動輪椅
外文關鍵詞: Controllability, Functional electrical stimulation, Stroke, Leg-cycling wheelchair, Muscle tone, Energy cost
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   大部分的中風患者在發病後會遭受到神經生理方面的損傷,因而造成身體半側癱瘓或肌肉痙攣,這些症狀會導致相當多日常生活上的不方便。多數的中風偏癱患者選擇以傳統手動輪椅為其主要的移行輔具。然而,傳統手動輪椅主要設計對象為雙側上肢健全的患者,對於偏癱患者而言,操作傳統手動輪椅不但會因為不對稱的施力方式造成輪椅偏向,耗費更多力氣,因而妨礙他們在日常生活的獨立性!
      本研究經由對10位針中風偏癱患者進行觀察研究,測試者觀察患者操作傳統手動輪椅的過程及分析其操作特性,並依此獲得他們對移行輔具的需求。由中風偏癱患者的需求,本研究開發出一款功能性電刺激輔助下肢驅動輪椅。患者可利用健側腳及功能性電刺激輔助患側腳來驅動此款輪椅。當無功能性電刺激輔助時,此款輪椅便成為單純下肢驅動輪椅。
      接著,本研究利用三個實地測試(操作輪椅在沿橢圓軌道行進200公尺)來評估功能性電刺激輔助下肢驅動輪椅,下肢驅動輪椅及傳統手動輪椅的操控性,耗能成本及對下肢肌肉張力的影響。在操控性測試方面,20位中風偏癱患者參與評估輪椅的測試完成時間、偏軌次數及偏移百分比。結果顯示相較於傳統手動輪椅,功能性電刺激輔助下肢驅動輪椅耗費較少40%的完成時間、減少23%的偏移次數與減少36%偏移百分比。
      在耗能成本測試方面,16位中風偏癱患者參與評估輪椅的心肺反應,包含心跳、耗氧量、二氧化碳生成量、分鐘呼吸量及、呼吸交換率;以及耗能成本包含生理耗能指數及耗氧指數。結果顯示下肢驅動輪椅(有/無功能性電刺激輔助)比傳統手動輪椅有顯著高的心肺反應;此外,兩款下肢驅動輪椅比傳統手動輪椅有顯著低的生理耗能指數與耗氧指數。然而,有/無功能性電刺激輔助在心肺反應及耗能成本方面並無顯著差異。
      在下肢肌肉張力測試方面,17位中風偏癱患者參與評估操作輪椅前後對肌肉張力的影響,包含踝關節的埃許瓦斯量表修改版及H反射之H/M比率;及膝關節鐘擺運動的放鬆指數。另外,本研究利用埃許瓦斯量表修改版、H/M比率及放鬆指數在操作輪椅前後前後的改變量來比較下肢驅動輪椅有/無功能性電刺激輔助時的差異性。結果顯示操作兩款下肢驅動輪椅後,踝關節的埃許瓦斯量表修改版及H/M比率呈顯著下降;放鬆指數則顯著上升。但比較肌肉張力測試參數改變量發現,對肌肉張力高的患者,功能性電刺激輔助下肢驅動輪椅提供更多降低張力的效果。
      對中風偏癱患者而言,操作功能性電刺激輔助下肢驅動輪椅及下肢驅動輪椅能提供較傳統手動輪椅更佳的操控性,較高的心肺反應及較低的耗能成本。在使用下肢驅動輪椅後,可減少患者的肌肉張力。下肢驅動輪椅加上功能性電刺激並無法改善其操控性或降低耗能成本,但對肌肉張力高的患者,有顯著降低張力的效果。

     Most stroke survivors suffered from residual neurological deficits, and remains awkward motions such as hemiplegia and hypertonia after recovery from disease. Manual wheelchair is the most popular tools stroke survivors choose as their mobility device. A manual wheelchair was designed for patients with both healthy upper limbs; however, its asymmetrical propel pattern would force the wheelchair deviate toward the affected side and causing strait for stroke patients. Existent motor function impairments not only reduce exercise ability, consume much more energy, but also constipate the independent of daily life.
     10 stroke patients with hemiplegia were recruited to participate in observation survey. The tester observed the patients operating manual wheelchairs and analyzed their propulsion characteristics to obtain their requirements of mobility devices. From the hemiplegic patients’ requirements, we developed a functional electrical stimulation-assisted leg-cycling wheelchair (FES-LW). Subjects can propel the FES-LW by unaffected leg and affected leg with the assistance of FES. Subjects can also propel the LW without FES.
     Three field tests (i.e. propels wheelchair along an oval pathway for 200 m) were conducted to evaluate the controllability, energy cost and effects of leg muscle tone of the FES-LW, LW comparing to the manual wheelchair (MW). In the controllability test, 20 stroke patients were recruited to evaluate the finish time, deviation frequencies, and deviation percentage of each wheelchair. The results showed subjects can propel the FES-LW and LW with 40% less finish time; 23% lower deviation frequencies and 36% lower deviation percentage than the MW.
     In the energy cost evaluation, 16 stroke patients were recruited to evaluate the cardiopulmonary responses including, heart rate (HR), oxygen consumption (VO2), carbon dioxide production (VCO2), minute ventilation (VE,), respiratory exchange ratio (RER); and energy cost including physiological cost index (PCI) and oxygen index (OI), of each wheelchair. The results showed the HR, VO2, VCO2, VE and RER were significantly higher in the FES-LW and LW than the MW. The PCI and OI recorded from applying FES-LW and LW were significantly lower than those from MW. Yet; no dramatic difference was found in cardiopulmonary responses and energy cost between FES-LW and LW.
     In the leg muscle tone evaluation, 17 stroke patients were recruited to evaluate the modified Ashworth Scale (MAS), H/M ratio and relaxation index (RI) of each wheelchair between pre- and post test. Changes of MAS (MASc), changes of H/M (H/Mc) and changes of RI (RIc) were then compared between FES-LW and LW. The results showed MAS and H/M ratio decreased a lot and RI increased huge immediately after the FES-LW and LW usage. For subjects with higher muscle tone, significant lower of MASc, H/Mc and higher of RIc were found by using FES-LW compared to the LW.
     For stroke patients, FES-LW and LW showed better controllability than MW. In addition, higher cardiopulmonary responses and lower energy cost was found in the LWs with or without FES compared to the MW. The situation of leg spasticity is reduced after propulsion of the FES-LW and the LW. The application of FES doesn’t help improve controllability and reducing energy cost but reduce subjects’ spasticity with higher muscle tone.

    Chapter 1. Introduction 1.1 General introduction of stroke………………………………1 1.2 Mobility devices for stroke patients………………………4 1.3 Wheelchair propelled by legs…………………………………8 1.4 Functional electrical stimulation…………………………16 1.5 Motivation and purposes………………………………………20 Chapter 2. Design and development of FES-assisted leg-cycling wheelchair 2.1 Observation Survey……………………………………………23 2.2 Wheelchair design……………………………………………27 2.3 Pilot test………………………………………………………42 Chapter 3. Controllability evaluation for stroke patients using FES-LW 3.1 Background………………………………………………………48 3.2 Materials and Methods………………………………………51 3.3 Results…………………………………………………………56 3.4 Discussion………………………………………………………59 3.5 Summary…………………………………………………………61 Chapter 4. Energy cost evaluation for stroke patients using FES-LW 4.1 Background………………………………………………………62 4.2 Materials and Methods………………………………………65 4.3 Results…………………………………………………………69 4.4 Discussion………………………………………………………74 4.5 Summary…………………………………………………………77 Chapter 5. Leg muscle tone evaluation for stroke patients by using FES-LW 5.1 Background………………………………………………………78 5.2 Materials and Methods………………………………………84 5.3 Results…………………………………………………………89 5.4 Discussion………………………………………………………93 5.5 Summary…………………………………………………………96 Chapter 6. Conclusion 6.1 Achievement of the present study…………………………97 6.2 Limitations of the present study…………………………98 6.3 Future works……………………………………………………98 References……………………………………………………………100

    1. Ahlborg G, Jensen-Urstad M. Metabolism in exercising arm vs. leg muscle. Clin Physiol 1991; 11: 459-468.
    2. Aho K, Harmsen P, Hataon S, Marquardsen J, Smirnow VE, Strasser T. Cerebrovascular disease in the community: results of a WHO Collaborative Study. Bull World Health Organ 1980; 58: 113-130.
    3. Alfieri V. Electrical treatment of spasticity. Reflex tonic activity in hemiplegic patients and selected specific electrostimulation. Scand J Rehabil Med 1982;14:177-182.
    4. American Heart Association (AHA). Heart disease and stroke statistics -2006 update. Dallas; AHA; 2007.
    5. Aminoff T, Smolander J, Korhonen O, Louhevaara V. Prediction of acceptable physical work loads based on responses to prolonged arm and leg exercise. Ergonomics 1998; 41: 109-120.
    6. Bajd T, Bowman RG. Testing and modeling of spasticity. J Biomed Eng 1982; 4: 90-96.
    7. Bajd T, Vodovnik L. Pendulum testing of spasticity. J Biomed Eng 1984; 6: 9-16.
    8. Bamford J, Sandercock P, Dennis M, Bum J, Warlow C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991; 337: 1521-1526.
    9. Barker DJ, Reid D, Cott C. Acceptance and meanings of wheelchair use in senior stroke survivors. Am J Occup Ther 2004; 58: 221-230.
    10. Barrett JA, Watkins C, Plant R. The COSTAR wheelchair study: a two-centre pilot study of self-propulsion in a wheelchair in early stroke rehabilitation. Clin Rehabil 2001; 15: 32-41.
    11. Barstow TJ, Scremin AME, Mutton DL, Kunkel CF, Cagle TG, Whipp BJ. Peak and kinetic cardiorespiratory responses during arm and leg exercise in patients with spinal cord injury. Spinal Cord 2000; 38: 340-345.
    12. Becker, G., 1993. Continuity after a stroke: Implications of lifecourse disruption in old age. Gerontologist. 33, 148-158.
    13. Benson RT, Sacco RL. Stroke prevention: hypertension, diabetes, tobacco and lipids. Neurol Clinics 2000; 19: 309-319.
    14. Berkheimer JC. Leg Mobilized Attachments for Wheelchairs. US patent 273,304, 1993.
    15. Bhambhani YN, Eriksson P, Steadward RD. Reliability of peak physiological responses during wheelchair ergometry in persons with spinal cord injury. Arch Phys Med Rehabil 1991; 72: 559-562.
    16. Bloswick DS, Erickson J, Brown DR, Howell G, Mecham W. Maneuverability and usability analysis of three knee-extension propelled wheelchairs. Disabil Rehabil 2003; 25: 197-206.
    17. Bobath B. Adult Hemiplegia: Evaluation and Treatment, Butterworth-Heinemann Ltd., Oxford, 1994.
    18. Bohannon BW. Variability and reliability of the pendulum test for spasticity using a CybexⅡ isokinetic dynamometer. Phys Ther 1987; 67: 659-661.
    19. Borg G. An introduction to Borg's RPE-scale. Ithaca, NY: Mouvement Publications. 1985.
    20. Bowman B, Bajd T. Influence of electrical stimulation on skeletal muscle spasticity. In: Popovic D, editor. Proceedings of the 7th International Symposium on External Control of Human Extremities. Belgrade: Yugoslav Committee for Electronics and Automation, 1981:567-76.
    21. Bressel E, McNair PJ. The effect of prolonged static and cyclic stretching on ankle joint stiffness, torque relaxation, and gait in people with stroke. Phys Ther 2002; 82: 880-887.
    22. Carter H, Jones A, Barstow T, Burnley M, Williams C, Doust J. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol 2000; 89: 899-907.
    23. Chen JJ, Yu YN, Hung DG, Ann BT, Chang GC. Applying fuzzy logic to control of cycling movement induced by functional electrical stimulation. IEEE Trans Rehabil Eng1997; 5: 158-169.
    24. Chilibeck PD, Bell G, Jeon J, Weiss CB, Murdoch G, MacLean I, Ryan E, Burnham R. Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscles. Metabolism 1999; 48: 1409-1413.
    25. Convertino VA, Hung J, Goldwater DJ, De Busk RF. Cardiovascular responses to exercise in middle aged men after days bed rest. Circulation 1982; 1: 134-140.
    26. Department of Health (DOH). http://www.doh.gov.tw/statistic/index.htm. 2005.
    27. Dietz V, Berger W. Normal and impaired regulation of muscle stiffness in gait: New hypothesis about muscle hypertonia. Exp Neurol 1983; 73: 680-687.
    28. Fujiwara T, Liu M, Chino N. Effect of pedaling exercise on the hemiplegic lower limb. Am J Phys Med Rehabil 2003; 82: 357-362.
    29. Gangelhoff J, Cordain L, Tucker A, Sockler J. Metabolic and heart rate responses to submaximal arm crank ergometry. Arch Phys Med Rehabil 1988; 69: 101-105.
    30. Garber CE, Monteiro R, Patterson RB, Braun CM, Lamont LS, A comparison of treadmill and arm-leg ergometry exercise testing for assessing exercise capacity in patients with peripheral arterial disease. J Cardiopulm Rehabil 2006; 26: 297-303.
    31. Glaser RM, Sawka MN, Laubach LL, Suryaprasad AG. Metabolic. Cardiopulmonary responses to wheelchair and bicycle ergometry. J Appl Physiol 1979; 46: 1066-1070.
    32. Glaser RM, Sawka MN, Young RE, Suryaprasad AG. Applied physiology for wheelchair design. J Appl Physiol 1980; 48: 41-44.
    33. Glaser RM, Petrofsky JS, DuFour HR. Wheelchair and drive system therefor. US patent 4,523,769. 1985.
    34. Glenn MB, Whyte J, editors. The practical management of spasticity in children and adults. Philadelphia: Lea & Febiger; 1990.
    35. Gregson JM, Leathley M, Moore AP, Sharma AK, Smith TL, Watkins CL. Reliability of the tone assessment scale and the modified Ashworth Scale as clinical tools for assessing poststroke spasticity. Arch Phys Med Rehabil 1999; 80: 1013-1016.
    36. Hintzy F, Tordi N, Perrey S. Muscular efficiency during arm cranking and wheelchair exercise: a comparison. Int J Sports Med 2002; 23: 408-414.
    37. Huang CY, Wang CH, Hwang IS. Characterization of the mechanical and neural components of spastic hypertonia with modified H reflex. J Electromyogr Kinesiol 2006; 16: 384-391.
    38. Hunt KJ, Ferrario C, Grant S, Stone B, McLean AN, Fraser MH, Allan DB. Comparison of stimulation patterns for FES-cycling using measures of oxygen cost and stimulation cost. Med Eng Phys 2006; 28: 710-718.
    39. Hwang IS, Lin CF, Tung LC, Wang CH. Responsiveness of the H reflex to loading and posture in patients following stroke. J Electromyogr Kinesiol 2004; 14: 653-659.
    40. James KB. Leg-propelled wheelchair. U.S. Patent 6,648,354, 2003.
    41. Janssen TW, Beltman JM, Elich P, Koppe PA, Konijnenbelt H, de Haan A, Gerrits KH. Effects of electric stimulation–assisted cycling training in people with chronic stroke. Arch Phys Med Rehabil 2008; 89: 463-469.
    42. Kalra L, Smith DH, Crome P. Stroke in patients aged over 75 years: outcome and predictors. Postgrad Med J 1993; 69: 33-36.
    43. Katz RT, Rymer WZ. Spastic hypertonia: mechanisms and measurement. Arch Phys Med Rehabil 1989; 70: 144-155.
    44. Katz RT, Rovai GP, Brait C, Rymer WZ. Objecctive quantification of spastic hypertonia: correlation with clinical findings. Arch Phys Med Rehabil 1992; 73: 339-347.
    45. Kirby RL, Ethans KD, Duggan RE, Saunders-Green LA, Lugar JA, Harrison ER. Wheelchair propulsion: descriptive comparison of hemiplegic and two-hand patterns during selected activities. Am J Phys Med Rehabil 1999; 78: 131-135.
    46. Koppo K, Bouckaert J, Jones AM. Oxygen uptake kinetics during high-intensity arm and leg exercise. Respir Physiol Neurobiol 2002; 133: 241-250.
    47. Kotila M. Declining incidence and mortality of stroke? Stroke 1984; 15: 255-259.
    48. Kralj A, Bajd T. Functional electrical stimulation: standing and walking after spinal cord injury. Boca Raton, CRC Press, 1989.
    49. Lance JW. Symposium synopsis. In: Feldman RG, Young RR, Koella WP, editors. Spasticity: disordered motor control. Chicago: Yearbook Medical; 1980. 485-494.
    50. Lehmann JF, Price R, DeLateur BJ, Hinderer S, Traynor C. Spasticity: quantitative measurements as a basis for assessing effectiveness of therapeutic intervention. Arch Phys Med Rehabil 1989; 70: 6-15.
    51. Levin MF, Hui-Chan CW. Relief of hemiparetic spasticity by TENS is associated with improvement in reflex and voluntary motor functions. Electroencephalogr Clin Neurophysiol 1992; 85: 131-142.
    52. Lo HC, Tsai KH, Yeh CY, Chang GL, Su FC. Evaluation of functional electrical stimulation assisted leg-propelled wheelchair in hemiplegic patients. Clin Biomech 2008; 23: S67 -S73.
    53. MacGregor J. The Objective measurement of physical performance with long-term ambulatory physiological surveillance equipment (LAPSE). Proc 3rd Int Symp on Ambulatory Monitoring. London. 1979: 29-39.
    54. MacKay-Lyons MJ, Makrides L. Exercise capacity early after stroke. Arch Phys Med Rehabil 2002; 83: 1697-1702.
    55. Macko RF, Smith GV, Dobrovolny CL, Sorkin JD, Goldberg AP, Silver KH. Treadmill training improves fitness reserve in chronic stroke patients. Arch Phys Med Rehabil 2001; 82: 879-884.
    56. Makino K, Wada F, Hachisuka K, Yoshimoto N, Ohmine S. Speed and physiological cost index of hemiplegic patients pedaling a wheelchair with both legs. J Rehabil Med 2005; 37: 83-86.
    57. Mann WC, Tomita M. Perspective on assistive device among elderly persons with disabilities. Technology and Disability 1998; 9: 119-148.
    58. Mayer NH. Clinicophysiologic conceps of spasticity and motor dysfunction in adults with an upper motoneuron lesion. Muscle Nerve Suppl 1997; 6: S1-S13.
    59. Mayo NE, Wood-Dauphinee S, Ahmed S, Gordon C, Higgins J, McEwen S, Salbach N. Disablement following stroke. Disabil Rehabil 1999; 21: 258-268.
    60. Mol VJ, Baker CA. Activity intolerance in the geriatric stroke patient. Rehabil Nurs 1991; 16: 337-343.
    61. Motl RW, Knowles BD, Dishman RK. Acute bouts of active and passive leg cycling attenuate the amplitude of the soleus H-reflex in humans. Neurosci Lett 2003; 347: 69-72.
    62. Motl RW, Snook EM, Hinkle ML, McAuley E. Effect of acute leg cycling on the soleus H-reflex and modified Ashworth scale scores in individuals with multiple sclerosis. Neurosci Lett 2006; 406: 289-292.
    63. Mumma, CM. Perceived losses following stroke. Rehabil Nurs 2000; 25: 192-195.
    64. Nuyens GE, de Weerdt WJ, Spaepen Jr AJ, Kiekens C, Feys HM. Reduction of spastic hypertonia during repeated passive knee movements in stroke patients. Arch Phys Med Rehabil 2002; 83: 930-935.
    65. O'Sullivan SB, Schmitz TJ. Physical rehabilitation assessment and treatment (3rd Edition). Philadelphia, Stroke 1995: 327-360.
    66. Peckham PH, Creasey GH. Neural prostheses: clinical applications of functional electrical stimulation spinal cord injury. Paraplegia 1992; 30: 996-1001.
    67. Pentland WE, Twmey LT. The weight-bearing upper extremity in women with long term paraplegia. Paraplegia 1991; 29: 521-530.
    68. Petrofsky JS, Phillips CA, Heaton HH. Bicycle ergometer for paralysed muscle. J Clin Eng 1984; 9: 13-19.
    69. Philips CA. Functional electrical stimulation: Technological restoration after spinal cord injury. Springer-Verlag New York Inc., 1991.
    70. Pomeroy VM, Mickelborough J, Hill E, Rodgers P, Giakas G, Barrett JA. A hypothesis: self-propulsion in a wheelchair early after stroke might not be harmful. Clin Rehabil 2003; 17: 174-180.
    71. Potempa K, Lopez M, Braun LT, Szidon JP, Fogg L, Tincknell T. Physiological outcomes of aerobic exercise training in hemiparetic stroke patients. Stroke 1995; 26: 101-105.
    72. Ragnarsson KT, O’Daniel W. Clinical evaluation of computerized functional electrical stimulation after spinal cord injury: a multicenter pilot study. Arch Phys Med Rehabil 1988; 69: 672-677.
    73. Rosche J, Paulus C, Maisch U, Kaspar A, Mauch E, Kornhuber HH. The effects of therapy on spasticity utilizing a motorized exercise-cycle. Spinal Cord 1997; 35: 176-178.
    74. Ryan AS, Dobrovolny CL, Smith GV, Silver KH, Macko RF. Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Arch Phys Med Rehabil 2002; 83: 1703-1707.
    75. Seib TP, Price R, Reyes MR, Lehmann JF. The quantitative measurement of spasticity: effect of cutaneous electrical stimulation. Arch Phys Med Rehabil 1994; 75: 746-750.
    76. Sie IH, Waters RL, Adkins RH, Gellman H. Upper extremity pain in the postrehabilitation spinal cord injured patient. Arch Phys Med Rehabil 1992; 73: 44-48.
    77. Slager UT, Hsu JD, Jordan C. Histochemical and morphometric changes in muscles of stroke patients. Clin Orthop 1985: 159-168.
    78. Sinkjaer T, Magnussen I. Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain 1994; 117: 355-363.
    79. Sipski ML, Delisa JA, Schweer S. Functional electrical stimulation bicycle ergometry: Patient perceptions. Am J Phys Med Rehabil 1989; 68: 147-149.
    80. Skold C, Lonn L, Harms-Ringdahl K, Hultling C, Levi R, Nash M, Seiger A. Effects of functional electrical stimulation training for six months on body composition and spasticity in motor complete tetraplegic spinal cord-injured individuals. J Rehabil Med 2002; 34: 25-32.
    81. Sloan KE, Bremner LA, Byrne J, Day RE, Scull ER. Musculoskeletal effects of an electrical stimulation induced cycling programme in the spinal injured. Paraplegia 1994; 32: 407-415.
    82. Solomonow M, Reisin E, Aguilar E, Baratta RV, Best R, D’Ambrosia R. Reciprocating gait orthosis powered with electrical muscle stimulation (RGO II). Part II: Medical evaluation of 70 paraplegic patients. Orthopedics 1997; 20: 411-418.
    83. Stein RB, Chong SL, James KB, Bell GJ. Improved efficiency with a wheelchair propelled by the legs using voluntary activity or electric stimulation. Arch Phys Med Rehabil 2001; 82: 1198-1203.
    84. Stefanovska A, Vodovnik L, Gros N, Rebersek S, Acimovic-Janezic R. FES and spasticity. IEEE Trans Rehabil Eng. 1989; 36: 738-745.
    85. Stillman B, McMeeken J. A video-based version of the pendulum test: technique and normal response. Arch Phys Med Rehabil. 1995; 76:166-176.
    86. Subbarao JV, Klopstein J, Turpin R. Prevalence and impact of wrist and shoulder pain in patients with spinal cord injury. J Spinal Cord Med 1995; 18: 9-13.
    87. Tsai KH, Yeh CY, Lo HC, Lin SY. Controllability and physiological evaluation of 3 unilaterally-propelled wheelchairs for patients with hemiplegia. J Rehabil Med 2007; 39: 693-697.
    88. Tsai KH, Yeh CY, Lo HC. A novel design and clinical evaluation of a wheelchair for stroke patients. Int J Industrial Ergon 2008; 38: 264-271.
    89. Tubman LA, Bell GJ, Kido A, James KB, Haykowsky MJ, Stein RB. Submaximal and maximal cardiorespiratory responses of leg wheeling and arm wheeling a new wheelchair prototype. Res Sports Med 2004; 12: 115-133.
    90. van der Salm A, Veltink PH, IJzerman MJ, Groothuis-Oudshoorn KC, Nene AV, Hermens HJ. Comparison of electric stimulation methods for reduction of triceps surae spasticity in spinal cord injury. Arch Phys Med Rehabil 2006; 87: 222-228.
    91. van der Woude LHV, Veeger HEJ, Rozendal RH. Propulsion technique in handrim wheelchair propulsion. J Med Eng Technol 1989; 13: 136-141.
    92. van der Woude LHV, Veeger HEJ, de Boer YA, Rozendal RH. Physiological evaluation of a newly designed lever mechanism for wheelchair. J Med Eng Technol 1993; 17: 232-240.
    93. van der Woude LH, Dallmeijer AJ, Janssen TW, Veeger D. Alternative modes of manual wheelchair ambulation: an overview. Am J Phys Med Rehabil 2001; 80: 765-777.
    94. Wang RY, Tsai MW, Chan RC. Effects of surface spinal cord stimulation on spasticity and quantitative assessment of muscle tone in hemiplegic patients. Am J Phys Med Rehabil 1998; 77: 282-287.
    95. Yeh CY, Chen JJ, Tsai KH. Quantifying the effectiveness of the sustained muscle stretching treatments in stroke patients with ankle hypertonia. J Electromyogr Kinesiol 2007; 17: 453-461.

    下載圖示 校內:2011-12-24公開
    校外:2013-12-24公開
    QR CODE