| 研究生: |
黃富成 Wong, Fu-Seng |
|---|---|
| 論文名稱: |
台南市土壤液化層分佈研究-以0206美濃地震為例 Distribution of Liquefied Soil Layers caused by the 0206 Meinong Earthquake in Tainan |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 0206美濃地震 、土壤液化 、沉陷量 |
| 外文關鍵詞: | 0206 Meinong Earthquake, Liquefaction, Settlement |
| 相關次數: | 點閱:224 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
0206地震於台南市中西區、安南區、新市區、北區及永康區等多個行政區內引發大範圍土壤液化災害,造成台南地區有過千戶的民宅受損。在個別案例中,建物因土壤液化發生嚴重下陷與傾斜,造成周邊維生水管破裂,路面出現裂縫,甚至建物無法使用或居住。由於本次受災區域老舊住宅密集,為提供後續既有建物地盤補強或新建物評估基礎穩定性,有必要儘速進行災區之土壤液化潛勢評估,並提供可能液化土層深度與厚度分佈。
為建立災區的液化潛能分佈圖,本研究蒐集災區內的地質鑽探資料,先針對安南區受災區進行土壤液化潛勢評估,採用簡易經驗分析法中常用的NCEER修正之Seed法(2001)、Tokimatsu &Yoshimi法(1983)以及內政部(2011)「建築物耐震設計規範及解說」所建議之液化潛勢判定方法進行評估。依據比較分析結果,再選用我國耐震設計規範建議方法,分析其餘受災區內的鑽孔於各深度下之抗液化安全係數,透過Iwasaki深度加權法計算出各鑽孔的液化潛能指數,評估0206地震土壤液化災區的液化潛能分佈。本研究同時也針對土壤液化後沉陷量大於30 cm之嚴重災點區域,分析災點鄰近的液化層深度及厚度,提供後續的修繕或改善工程作為參考。另外,土壤液化造成災區出現不同嚴重程度的下陷,為評估災區的液化後下陷量,本研究以Tokimatsu & Seed(1987)評估法與紀雲曜(1997)的EPLS法進行安南區受災區的沉陷量分析,再用EPLS法分析其餘鑽孔,建立出災區的沉陷量潛勢圖,並且與實際沉陷量作比對。
分析成果顯示,以NCEER修正之Seed法與Tokimatsu & Yoshimi法分析所得的土壤液化潛能較我國耐震設計規範建議方法的分析結果低。以我國耐震設計規範建議方法所繪製的安南區受災區液化潛勢圖較能符合嚴重災點的分佈。各災區的液化潛能分佈圖大致上能良好相對災點的分佈位置,但中西區受災區的液化潛勢圖有部分災點位於低液化風險的範圍內,原因可能為部分分析採用之鑽孔深度不足20米所導致。比對受災區的沉陷量潛勢圖與實測值的,顯示新市區受災區的沉陷量分析成果與實測值最為吻合,其次為中西區受災區,而安南區受災區的沉陷量分析結果則有低估之情形。中西區受災區的可能土壤液化層分佈剖面圖顯示,嚴重災點鄰近的液化層深度範圍大約為2~8米;而安南區的土壤液化層分佈主要由西向東逐漸減少,與災點的分佈情形相同,災點集中的東側位置在深度20米也可能有液化層存在。由於分析所得之土壤液化層可能出現的區域乃住宅區,因多為老舊建物,因此後續應對可能存在土壤液化風險之區域進行地盤改良,如低壓灌漿工法,以避免後續土壤液化災害。
The 0206 Meinong Earthquake induced the disasters due to soil liquefaction in Tainan. The affected areas included West Central District, Annan District, Sinshih District, North District and Yongkang District. In some cases, excessive settlement and tilt of the buildings in the quake-stricken areas occurred. As the damaged constructions in the stricken areas of 0206 earthquake are old and intensive, it is necessary for evaluating the liquefaction potential of the disaster area and the distribution of the liquefied soil layers. Settlements are a common type of disasters in the 0206 earthquake, so the analysis of liquefaction settlement is essential to the future of the disaster mitigation planning. The study uses the simplified empirical methods which include Seed’s method revised by NCEER(2001), Tokimatsu & Yoshimi’s method(1983) and the method of the Seismic Design Specifications and Commentary of Buildings to evaluate the liquefaction potential of the stricken areas in Annan District. The rest are evaluated by the method of the Seismic Design Specifications and Commentary of Buildings. The distribution of the liquefied soil layers is determined by the liquefaction potential index. Tokimatsu & Seed’s method(1987) and EPLS are adopted for the analysis of liquefaction-induced settlement of the stricken areas in Annan District. The rest are evaluated by EPLS. The liquefaction potential maps of the stricken areas coincide with the distribution of the disaster points caused by soil liquefaction. The soils within 5 meters near the serious disaster points are loose sands. The values of the settlements evaluated by Tokimatsu & Seed’s method(1987) are lower than the EPLS’s.
Casagrande, A. (1936). ‘‘Characteristics of Cohesionless Soils Affecting the Stability of Earth Fills,’’ Journal of the Boston Society of Civil Engineers, Vol. 23, pp. 257-276.
Chaney, R. C. (1978). "Saturation Effects on the Cyclic Strength of Sand," Proceeding of Special Conference on Earthquake Engineering and Soil Dynamics, ASCE, pp. 342-359.
Eseller-Bayat, E., Yegian, M., Alshawabkeh, A., and Gokyer, S. (2013). "Liquefaction Response of Partially Saturated Sands. I: Experimental Results," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol 139, No 6, pp. 863-871.
Finn, W. D. L., Lee, K. W., and Martin, G. R. (1977). “An Effective Stress Model for Liquefaction,” Journal of the Geotechnical Division, ASCE, Vol. 103, No. GT6, pp. 517-533.
Ghaboussi, J., and Dikmen, S. U. (1979). “LASS-III, Computer Program for Seismic Response and Liquefaction of Layered Ground under Multi-Directional Shaking,” Report No. UILU-ENG-79-2012, Department of Civil Engineering, University of Illinois at Urbana-Champaign, Urbana.
Hazen, A. (1920). “Hydraulic Fill Dams,” Transactions of the American Society of Civil Engineers, Vol. 83, pp. 1713-1745.
Ishibashi, I. M., Sherlif, M. A. and Cheng, W. L. (1982). “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, ASCE, Vol. 22, No. 1, pp.37-48.
Ishihara, K. (1985). ‘‘Stability of Natural Deposits during Earthquakes,’’ Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol 1, pp. 321-376.
Ishihara, K. (1993). “Liquefaction and Flow Failure during Earthquakes,” Gèotechnique, Vol. 43, No. 3, pp. 351-415.
Ishihara, K. (1996). Soil Behavior in Earthquake Geotechnics, Oxford, New York.
Ishihara, K., and Yoshimi, M. (1992). “Evaluation of Settlement in Sand Deposits Following Liquefaction during Earthquakes,” Soil and Foundations, Vol. 32, No. 1, pp. 173-188.
Ishihara, K., Sodekawa, M., and Tanaka, Y. (1978) “Effects of Overconsolidation on Liquefaction Characteristics of Sands Containing Fines,” Dynamic Geotechnical Testing, ASTM, STP 654, pp. 246-264.
Iwasaki, T., Arakawa, T., and Tokida, K. (1984). “Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,” International Journal of Soil Dynamics and Earthquake Engineering, Vol. 3, No. 1, pp. 49-58.
Kishida, H. (1969). “Characteristics of Liquefied Sands during Mino-Owari, Tohnankai and Fukui Earthquakes,” Soil and Foundations, Vol. 9, No. 1, pp. 75-92.
Kramer, S. L. (1996). Geotechnical Earthquake Engineering, Prentice Hall, Englewood Cliffs.
Lee, K. L., and Albaisa, A. (1974). "Earthquake-induced settlements in saturated sands," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 100, No. 4, pp. 387-400.
Lee, K. L., and Fitton, J. A. (1969). “Faction Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquake on Soils the Foundations, ASTM, STP 450, pp. 71-96.
Liang, R. W., Bai, X. H., and Wang, J. C. (2000). “Effect of Clay Particle Content on Liquefaction of Soil,” Proceedings, 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
Martin, P. P. (1978), “A Computer Program for the Nonlinear Analysis of Vertically Propagating Shear Waves in Horizontally Layered Deposits,” EERC Report 78-23, Earthquake Engineering Research Center, University of California, Berkeley, Calif.
Martin, P. P., and Seed, H. B. (1978), “APOLLO, A Computer Program for the Analysis of Pore Pressure Generation and Dissipation in Horizontal Sand Layers During Cyclic or Earthquake Loading,” EERC Report 78-21, Earthquake Engineering Research Center, University of California, Berkeley, Calif.
Mulilis, J. P., Chan, C. K., and Seed, H. B. (1975). “The Effects of Method of Sample Preparation on the Cyclic Stress Strain Behavior of Sands,” EERC Report 75-18, College of Engineering, University of California, Berkeley, July 1975.
Nagase, H. (1984). “Strength and deformation characteristics of sand subjected to irregular loading in multiple directions,” Ph.D. dissertation, University of Tokyo, Japan.
Nagase, H., and Ishihara, K. (1988). “Liquefaction-Induced Compaction and Settlement of Sand during Earthquakes,” Soils and Foundations, Vol. 28, No. 1, pp. 65-76.
Peacock, W. H., and Seed, H. B. (1968). "Sand Liquefaction under Cyclic Loading Simple Shear Conditions," Journal, SMF Division, Proceedings, ASCE, Vol. 94, No. SM3, 1968, pp. 689-708
Schnabel, Per B., Lysmer, J., and Seed, H. B. (1972). “SHAKE, A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites,” EERC Report 72-12, Earthquake Engineering Research Center, University of California, Berkeley, Calif.
Seed H. B., and Peacock W. H. (1971). “Test Procedures for Measuring Soil Liquefaction Characteristics,” Journal of Soil Mechanics & Foundations Division, ASCE, Vol. 97, No. 8, pp. 1099-1119.
Seed, H. B., and Idriss, I. M. (1971). “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, Vol. 97, No. 9, pp. 1249-1273.
Seed, H. B., and Idriss, I. M. (1982). Ground Motions and Soil Liquefaction during Earthquakes, Earthquake Engineering Research Institute, Oakland, Calif.
Seed, H.B. (1976). “Evaluation of Soil Liquefaction Effects on Level Ground during Earthquakes,” Preprint No. 2752, ASCE National Convention, Sept. 27-Oct. 1, pp. 1-104.
Seed, H.B., Idriss, I.M., Makdisi, F., and Banerji, N. (1975). ‘‘Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analysis,’’ Report EERC75-29, University of California, Berkeley, USA.
Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M. (1985). ‘‘The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation,’’ Journal of Geotechnical Engineering, Vol. 111, No. 12, pp. 1425-1445.
Sherif, M. A., Ishibashi, I., and Tsuchiga, C. (1977). “Saturated Effects on Initial Soil Liquefaction,” Journal of the Geotechnical Engineering Division, Vol. 103, No. 8, pp. 914-917.
Silver, M. L., and Seed, H. B. (1971). “Volume changes in sands during cyclic loading,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. 9, pp. 1171-1182
Sumer, B., Ansal, A., Cetin, K., Damgaard, J., Gunbak, A., Hansen, N., Sawicki, A., Synolakis, C., Yalciner, A., Yuksel, Y., and Zen, K. (2007). ”Earthquake-Induced Liquefaction around Marine Structures,” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 133, No. 1, pp. 55–82.
Tatsuoka, F., Sasaki, T., and Yamada, S. (1984). “Settlement in saturated sand induced by cyclic undrained simple shear,” Proceedings of the 8th World Conference on Earthquake Engineering, San Francisco, Calif., pp. 95-102.
Terzaghi, K. (1925). Erdbaumechanik auf Bodenphysikalischer Grundlage, Franz Deuticke, Vienna, Austria.
Tokimatsu, K. and Yoshimi, Y. (1983). “Empirical Correlation of Soil Liquefaction based on SPT N-value and Fines Content,” Soils and Foundations, Vol.23, No. 4, pp. 56-74.
Tokimatsu, K., and Seed Η. Β. (1987). “Evaluation of Settlements in Sands due to Earthquake Shaking,” Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 8, pp. 861-878.
Wong, R. T., Seed, H. B., and Chan, C. K. (1975). “Cyclic Loading Liquefaction of Gravelly Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 101, No. GT6, pp. 571-583.
Youd, T. L., Idriss, I. M., Andrus R. D., Arango, R. C., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Harder, Jr., L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson, III, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., and Stokoe, II, K. H. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 10, pp. 817-833.
中央災害應變中心(2016),「0206地震災害應變處置報告第16報(核定)」。
中央氣象局地震測報中心(2016),「第006號有感地震報告」。
內政部營建署(2011),「建築物耐震設計規範及解說」。
日本港灣協會(2009),「港灣設施技術上之基準同解說」。
日本道路協會(2012),「道路橋示方書・同解説」。
台北市政府工務局(2006),「台北市建築物工程施工損害鄰房鑑定手冊」,台北市。
台南市政府(2016),「台南市0206震災土壤液化調查工作」。
吳偉特(1979),「台灣地區砂性土壤液化潛能之初步分析」,土木水利季刊,第六卷,第二期,第39-70頁。
施政杰(2003),「能量式液化評估模式之研究」,碩士論文,國立成功大學土木工程研究所,台南。
紀雲曜(1997),「高雄縣永安沿海地區沖積層下陷及其潛能評估方法之研究」,博士論文,國立成功大學土木工程研究所,台南。
紀雲曜、歐麗婷(2005),「921地震引致員林地區液化後下陷量之評估」,中國土木水利工程學刊,第十七卷,第四期,第567-576頁。
夏啟明(1992),「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所,台南。
國家災害防救科技中心與國家地震工程研究中心(2016),「0206地震災情彙整與實地調查報告」。
張瑞津、石再添、陳翰霖(1996),「臺灣西南部台南海岸平原地形變遷之研究」,國立台灣師範大學地理系地理研究報告,第二十六期,第19-56頁。
陳卓然(1983),「過壓密與前期微震對台灣地區砂性土壤液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所,台北。
陳景文(1999),「台南主要經建區域之土壤液化潛能評估」,國家地震工程研究中心,NCREE-99-043。
經濟部中央地質調查所(2016),「20160206地震地質調查報告」。
葉祥海、李文勳、倪至寬(2001),「既有建物液化地盤改良之研究」,內政部建築研究所研究計畫成果報告。
台南市政府官方網站,http://www.tainan.gov.tw/tainan/。
校內:2021-08-10公開