簡易檢索 / 詳目顯示

研究生: 盧安里
Ruli Andaru
論文名稱: 以長廊帶沙洲地形變遷觀測與火山熔岩流災害區製圖 驗證一個多時期無人機影像之套合策略
A multi-temporal UAV images co-registration strategy evaluated by the observations of long corridor sandbank morphological changes and mapping of volcanic lahar hazard areas
指導教授: 饒見有
Rau, Jiann-Yeou
學位類別: 博士
Doctor
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 112
中文關鍵詞: 形態變化基於圖像之套合⻑廊沙洲活躍之熔岩穹頂潛在火山泥流災害
外文關鍵詞: morphological changes, image-based co-registration, long corridor sandbank, active lava dome, potential lahar hazard
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多時態之無人機(UAV)影像融合為UAV攝影測量相關應用之必備先決條件,其主要被用於降低不同時期之影像錯位現象。藉由攝影測量技術所處理之多時態UAV影像精度與影像品質、相機模型、影像融合策略、飛航規劃以及相機知地理定位有所相關,基於前述之各類因子,勢必需建置精確之影像融合方法、合適之相機模型、分佈良好之共軛點(地面控制點,GCP)以及精確之影像地理標記位置。然而,真實物體之表面紋理以及大氣現象可能產生不精確的三維表面重建成果,導致像空間中缺乏明確之特徵點以及空間分佈,進而造成影像匹配之不穩定性。而GCP設置位置之可達性也增加了GCP測量之困難度,此外,多數UAV僅配備消費等級之設備(GNSS及相機),其無法提供精確之影像位置,導致影像及後續製成之數值地表模型(DSM)產生幾何面向的畸變。由於較弱的成像幾何結構以及相機律定後剩餘之系統性影像詞差,導致畸變現象通常在線性之飛行方向上增加,例如沿海沙洲,
    在本研究中,我們為解決多時期無人機影像匹配問題,其中包含了多項改進辦法進而不需要整個影像資料集之地理標記資訊,甚至不需要在狹長型之測試區內部設地面控制點 (GCP)。首先,第一項改進中,我們使用兩步驟半開放式自行率定法(semi-on-the-job self-calibration, OTJSC),其利用具有方向及飛行高度變化預先率定相機之內方位參數及附加透鏡畸變參數,以解決UAV影像幾何失真問題,隨後以另一個semi-on-the-job self-calibration的內方位參數以標記影像位置。再者,利用對比度限制質方圖(CHLAE)以增強影像以利提取影像特徵及連結點。而後,基於影像匹配(image-based co-registration, IBC)提出了一項同時匹配多時期影像之方法,稱為移轉空中三角測量(Trans-AT),其因能最小化地表模型之幾何錯位而被提出,透過結合兩個連續航帶之帶狀UAV影像圖塊(strip image block, SIB)之空中三角測量過程(其類似於GNSS輔助空中三角測量)。最後的改進辦法中,以機器學習中的隨機森林(random forest)進行因影像匹配錯誤產生之點雲雜訊移除,尤其位於水體、雲層以及火山口。而隨機森林也被使用在物體分類及移除非地面之物體方面,以產製後續監測地表變化所需之數值地面模型(DTM)。
    為了評估本研究所提出的改進策略,選用了兩個研究地點,即台灣西南部的長廊沙洲和印尼峇厘島阿貢火山活躍的熔岩穹頂。實驗結果表示,研究提出的改進策略可提供最佳擬合相機參數,提高了圖像匹配的可靠性,並最大限度地減少套合 DTM 時垂直方向的差異。通過 Trans-AT 的 8 個步驟,可以正確套合9個不同時期的無人機沙洲數據集。該方法實現了高精度結果,內陸區域的平均垂直RMSE為13.5 cm,沙區為17.2 cm,相較於無人機影像之空間解析度低了1.5個像素。而在阿貢火山的數據集,需要結合 IBC 和點雲對點雲(cloud-to-cloud, C2C)之匹配技術以及粗略和精細的套合過程來共同套合六個時間序列的數據集。對於IBC和C2C的套合成果,垂直方向之RMSE分別為0.58 m 和 0.72 m。我們進一步使用套合的 DTM 來評估沙洲表面和熔岩穹頂在不同時間序列的形態變化。此外,我們提出了一種用於觀察火山泥流災害區域(淹沒區)的自動化工具,借助LAHARZ (USGS) 程式以緩和噴發後潛在的二次火山泥流效應。

    Multi-temporal unmanned aerial vehicle (UAV)-images co-registration is an essential prerequisite for any further UAV photogrammetric application to minimize errors associated with misalignment at the same areas captured on different dates. The accuracy of multi-temporal UAV through photogrammetry processes depends on several variables, including visual image quality, appropriate camera model, co-registration strategy, flight designs, and geo-localization of camera positions. To achieve accurate co-registration, an appropriate camera model, well-distributed tie-points/ground control points (GCPs) and accurate geotagged image positions are required. However, the natural texture of the object’s surface and the atmospheric phenomena can cause image matching uncertainty due to insufficient distinct key-points and spatial distribution in the image frame toward inaccurate 3D surface reconstruction. The site accessibility also makes the measurement of GCPs difficult or even impossible. Moreover, most UAVs are equipped with consumer-grade devices (onboard GNSS and non-metric cameras)—they cannot provide accurate image positions, leading to geometric distortions of the image network and the generated digital surface model (DSM). These distortions generally increase in a linear flight direction (corridor surveys), such as coastal sandbank due to weak imaging geometry and remaining systematic image residuals after camera calibration.
    In this study, we address the co-registration of multi-temporal UAV images incorporating several improvements without the need for accurate geotagged information on whole dataset and even distributed GCPs over a corridor-shaped area. In the first improvement, we perform a two-step semi-on-the-job self-calibration (OTJSC) to overcome the problems in the geometric distortion of image network using UAV image datasets with favor orientations and flight altitude variations to pre-calibrate the interior orientation parameters (IOPs) and additional lens distortion parameters (APs). This was then followed by another OTJSC of IOPs involving images with accurate geotagged positions. Second, contrast limited adaptive histogram equalization (CLAHE) image enhancement is applied to distinguish image features and increase the number and distributed of extracted tie-points. Third, a method to co-register multi-temporal UAV datasets through image-based co-registration (IBC), called “transferred aerial-triangulation (Trans-AT) is proposed to minimize the geometric misalignment of the generated surface models. It conducted by performing AT procedure (similar to GNSS-supported AT) of a combined two consecutive UAV datasets within a strip image block (SIB). In the last improvement, we applied a random-forest (RF) machine learning to remove noise points among the generated dense point clouds due to image matching failures, mainly caused by water bodies, clouds, and fumarole objects. The RF was also used to classify and remove non-ground objects, resulted in digital terrain model (DTM) as representation of bare-earth surface. The reconstructed surface models were then used for observing morphological changes and potential hazard.
    To evaluate those proposed improvement strategy, two case study sites were chosen, i.e., long corridor sandbanks in southwestern Taiwan and Mt. Agung’s active lava dome in Bali, Indonesia. The experimental results reveal that the proposed improvement strategy provides the best-fit camera parameters, improve the image matching reliability, and minimize the vertical discrepancies of co-registered DTMs. Through eight steps of Trans-AT, nine epoch UAV sandbank datasets can be co-registered properly. It achieves high accuracy results, with an average vertical RMSE of 13.5 cm in the inland areas and 17.2 cm in the sand area, which are lower than 1.5 pixels of the UAV image spatial resolution. As for Mt. Agung datasets, a combination of IBC and a cloud-to-cloud (C2C) matching technique with a coarse and fine registration process are needed to co-register six time-series datasets. It achieved a vertical RMSE of 0.58 m and 0.72 m for IBC and C2C co-registration, respectively. We further used the co-registered DTMs to assess the time series of morphological changes of sandbank surface and lama dome emplacements. Additionally, we proposed an automated tool for observing the areas of volcanic lahar hazard (inundation zones), mitigating the potential secondary lahar after eruptions with the aid of LAHARZ (USGS) programs.

    摘要 i ABSTRACT iii 致謝 v ACKNOWLEDGMENTS v LIST OF TABLES viii LIST OF FIGURES ix LIST OF ACRONYMS xiii CHAPTER 1: INTRODUCTION 1 1.1. Research Background 1 1.2. Research Contributions and Objectives 4 1.3. Dissertation Structure 7 CHAPTER 2: LITERATURE REVIEW 9 2.1. Multi-Temporal Images/Point Clouds Co-Registration 9 2.1.1. Image-Based Co-Registration Based on Photogrammetric Approaches 9 2.1.2. Cloud-Based Co-Registration 18 2.2. Camera Calibration 21 2.3. CLAHE Image Pre-Processing 24 2.4. Random Forest Machine Learning 25 2.5. Morphological Change Analysis 28 2.6. Overview of the 2017–2019 Mount Agung Volcanic Activity 29 2.7. Potential Lahar Hazard 31 CHAPTER 3: RESEARCH MATERIALS 34 3.1. UAV Survey Campaigns 34 3.1.1. Sandbanks Site 34 3.1.2. Mt. Agung Site 35 3.2. GNSS In-Situ Surveying 38 CHAPTER 4: METHODOLOGY 40 4.1. The Proposed Strategy 40 4.1.1. CLAHE Enhancement 41 4.1.2. Camera Calibration 42 4.1.3. Multi-Temporal UAV Images Co-Registration 46 4.1.4. Random Forest for Noise Points Removal 51 4.2. Performance Evaluation 52 4.3. Analysis of Morphological Changes 54 4.4. Determination of Lahar Inundation Zone 56 CHAPTER 5: RESULTS AND DISCUSSIONS 61 5.1. CLAHE Enhancement 61 5.1.1. Performance Evaluation 61 5.1.2. Tie-Point Reliability and Distribution 65 5.2. Two-Step Semi-on-The-Job Self-Calibration 67 5.2.1. Evaluation of Camera Model A 67 5.2.2. Evaluation of Camera Model B 68 5.2.3. Comparisons with Other Calibration Methods 70 5.3. Multi-Temporal UAV Images Co-Registration 74 5.3.1. Trans-AT Co-Registration for Sandbank Datasets 74 5.3.2. Combination of IBC with AT and A Cloud-to-Cloud (C2C) Matching Technique for Co-Registering Volcano Datasets 81 5.4. Morphological Change Analysis 84 5.4.1. Sandbank Change Analysis 84 5.4.2. Lava Dome Change Analysis 88 5.4.3. Mapping of Volcanic Lahar Hazard Areas 90 5.5. Performance of the proposed method 97 CHAPTER 6: CONCLUSIONS 99 REFERENCES 102

    1. Agrafiotis, P., Drakonakis, G.I., Skarlatos, D., & Georgopoulos, A., 2018. Underwater image enhancement before three-dimensional (3D) reconstruction and orthoimage production steps_ is it worth? Latest Developments in Reality-Based 3D Surveying and Modelling, MDPI: Basel. https://doi.org/10.3390/books978-3-03842-685-1-11
    2. Aicardi, I., Nex, F., Gerke, M., & Lingua, A., 2016. An Image-Based Approach for the Co-Registration of Multi-Temporal UAV Image Datasets. Remote Sensing. 8(9), 779-799. https://doi.org/10.3390/rs8090779
    3. Alasal, S.A., Alsmirat, M., Baker, Q.B., & Jararweh, Y., 2018. Improving passive 3d model reconstruction using image enhancement. 2018 6th International Conference on Multimedia Computing and Systems (ICMCS). 1-7. https://doi.org/10.1109/ICMCS.2018.8525977
    4. Andaru, R., Rau, J.-Y., Syahbana, D.K., Prayoga, A.S., & Purnamasari, H.D., 2021. The use of UAV remote sensing for observing lava dome emplacement and areas of potential lahar hazards: An example from the 2017–2019 eruption crisis at Mount Agung in Bali. Journal of Volcanology and Geothermal Research. 415, 107255-107276. https://doi.org/10.1016/j.jvolgeores.2021.107255
    5. Andaru, R., & Rau, J.Y., 2019. Lava dome changes detection at Agung mountain during high level of volcanic activity using uav photogrammetry. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-2/W13, 173-179. 10.5194/isprs-archives-XLII-2-W13-173-2019
    6. Andaru, R., Rau, J.Y., Syahbana, D.K., & Purnamasari, H.D., 2022. POST-ERUPTION LAVA DOME EMPLACEMENT MEASURED BY UAV PHOTOGRAMMETRY: AN INVESTIGATION ONE YEAR AFTER THE 2017–2019 MT. AGUNG ERUPTIONS. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B2-2022, 517-522. 10.5194/isprs-archives-XLIII-B2-2022-517-2022
    7. Bae, K.-H., & Lichti, D.D., 2008. A method for automated registration of unorganised point clouds. Isprs Journal of Photogrammetry and Remote Sensing. 63(1), 36-54. https://doi.org/10.1016/j.isprsjprs.2007.05.012
    8. Bello, S.A., Yu, S., Wang, C., Adam, J.M., & Li, J., 2020. Review: Deep Learning on 3D Point Clouds. Remote Sensing. 12(11), 10.3390/rs12111729
    9. Belongie, S., Malik, J., & Puzicha, J., 2002. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence. 24(4), 509-522. 10.1109/34.993558
    10. Benassi, F., Dall’Asta, E., Diotri, F., Forlani, G., Morra di Cella, U., Roncella, R., & Santise, M., 2017. Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation. Remote Sensing. 9(2), 172-195. https://doi.org/10.3390/rs9020172
    11. Benjamin Adam, R., O’Brien, D., Barnes, G., Wilkinson Benjamin, E., & Volkmann, W., 2020. Improving Data Acquisition Efficiency: Systematic Accuracy Evaluation of GNSS-Assisted Aerial Triangulation in UAS Operations. Journal of Surveying Engineering. 146(1), 05019006. 10.1061/(ASCE)SU.1943-5428.0000298
    12. Bernard, D., Trousil, E., & Santi, P., 2021. Estimation of inundation areas of post-wildfire debris flows in Southern California USA. Engineering Geology. 285, https://doi.org/10.1016/j.enggeo.2021.105991
    13. Besl, P.J., & McKay, N.D., 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 14(2), 239-256. https://doi.org/10.1109/34.121791
    14. Blanch, X., Eltner, A., Guinau, M., & Abellan, A., 2021. Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sensing. 13(8), 10.3390/rs13081460
    15. Bouaziz, S., Tagliasacchi, A., & Pauly, M., 2013. Sparse Iterative Closest Point. Computer Graphics Forum. 32(5), 113-123. https://doi.org/10.1111/cgf.12178
    16. Breiman, L., 2001. Random Forests. Machine Learning. 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
    17. Bueno, M., González-Jorge, H., Martínez-Sánchez, J., & Lorenzo, H., 2017. Automatic point cloud coarse registration using geometric keypoint descriptors for indoor scenes. Automation in Construction. 81, 134-148. https://doi.org/10.1016/j.autcon.2017.06.016
    18. Burdziakowski, P., Specht, C., Dabrowski, P.S., Specht, M., Lewicka, O., & Makar, A., 2020. Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project. Sensors. 20(14), 4000. https://doi.org/10.3390/s20144000
    19. Cabo, C., Ordóñez, C., Sáchez-Lasheras, F., Roca-Pardiñas, J., Cos, J., & Javier, d., 2019. Multiscale Supervised Classification of Point Clouds with Urban and Forest Applications. Sensors (Basel, Switzerland). 19(20), 4523. 10.3390/s19204523
    20. Capra, L., Norini, G., Groppelli, G., Macías, J.L., & Arce, J.L., 2008. Volcanic hazard zonation of the Nevado de Toluca volcano, México. Journal of Volcanology and Geothermal Research. 176(4), 469-484. https://doi.org/10.1016/j.jvolgeores.2008.04.016
    21. Carranza, E.J.M., & Castro, O.T., 2006. Predicting lahar-inundation zones: Case study in West Mount Pinatubo, Philippines. Natural Hazards. 37(3), 331-372. https://doi.org/10.1007/s11069-005-6141-y
    22. Castruccio, A., & Clavero, J., 2015. Lahar simulation at active volcanoes of the Southern Andes: implications for hazard assessment. Natural Hazards. 77(2), 693-716. https://doi.org/10.1007/s11069-015-1617-x
    23. Chen, D., Zhang, L., Mathiopoulos, P.T., & Huang, X., 2014. A Methodology for Automated Segmentation and Reconstruction of Urban 3-D Buildings from ALS Point Clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 7(10), 4199-4217. 10.1109/JSTARS.2014.2349003
    24. Chen, L., Yuan, Y., Yang, X., Huang, J., Yu, Y., & Yuan, X., 2018. Threshold Selection of River Network Extraction Based on Different DEM Scales Using ATRIC Algorithm. IOP Conference Series Materials Science and Engineering (Online). 322(5), 6. http://dx.doi.org/10.1088/1757-899X/322/5/052047
    25. Cook, K.L., & Dietze, M., 2019. Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points. Earth Surf. Dynam. 7(4), 1009-1017. 10.5194/esurf-7-1009-2019
    26. Córdoba, G., Villarosa, G., Sheridan, M.F., Viramonte, J.G., Beigt, D., & Salmuni, G., 2015. Secondary lahar hazard assessment for Villa la Angostura, Argentina, using Two-Phase-Titan modelling code during 2011 Cordón Caulle eruption. Natural Hazards and Earth System Sciences. 15(4), 757-766. https://doi.org/10.5194/nhess-15-757-2015
    27. Cucchiaro, S., Maset, E., Cavalli, M., Crema, S., Marchi, L., Beinat, A., & Cazorzi, F., 2020. How does co-registration affect geomorphic change estimates in multi-temporal surveys? GIScience & Remote Sensing. 57(5), 611-632. https://doi.org/10.1080/15481603.2020.1763048
    28. Darmawan, H., Walter, T., Brotopuspito, K., Subandriyo, & Nandaka, I., 2018. Morphological and structural changes at the Merapi lava dome monitored in 2012-15 using unmanned aerial vehicles (UAVs). Journal of Volcanology and Geothermal Research. 349, 256-267. https://doi.org/10.1016/j.jvolgeores.2017.11.006
    29. Davila, N., Capra, L., Gavilanes-Ruiz, J.C., Varley, N., Norini, G., & Vazquez, A.G., 2007. Recent lahars at Volcán de Colima (Mexico): Drainage variation and spectral classification. Journal of Volcanology and Geothermal Research. 165(3-4), 127-141. https://doi.org/10.1016/j.jvolgeores.2007.05.016
    30. De Beni, E., Cantarero, M., & Messina, A., 2019. UAVs for volcano monitoring: A new approach applied on an active lava flow on Mt. Etna (Italy), during the 27 February–02 March 2017 eruption. Journal of Volcanology and Geothermal Research. 369, 250-262. https://doi.org/10.1016/j.jvolgeores.2018.12.001
    31. Deng, F., Rodgers, M., Xie, S., Dixon, T., Charbonnier, S., Gallant, E., Velez, C., Ordonez, M., Malservisi, R., Voss, N., & Richardson, J., 2019. High-resolution DEM generation from spaceborne and terrestrial remote sensing data for improved volcano hazard assessment - A case study at Nevado del Ruiz, Colombia. Remote Sensing of Environment. 233, 111348-111367. https://doi.org/10.1016/j.rse.2019.111348
    32. Dewitte, O., Jasselette, J.C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., & Demoulin, A., 2008. Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Engineering Geology. 99(1), 11-22. https://doi.org/10.1016/j.enggeo.2008.02.006
    33. Diefenbach, A., Crider, J., Schilling, S., & Dzurisin, D., 2012. Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA. Bulletin of Volcanology. 74(2), 579-587. https://doi.org/10.1007/s00445-011-0548-y
    34. Donoso, F.A., Austin, K.J., & McAree, P.R., 2017. Three new Iterative Closest Point variant-methods that improve scan matching for surface mining terrain. Robotics and Autonomous Systems. 95, 117-128. 10.1016/j.robot.2017.05.003
    35. Dunkin, L., Eismann, E., Hartman, M., & Wozencraft, J., 2020. Seamless Integration of Lidar-Derived Volumes and Geomorphic Features into the Sediment Budget Analysis System. ERDC/TN RSM-20-4. Vicksburg, MS: US Army Engineer Research and Development Center. http://dx.doi.org/10.21079/11681/36296
    36. Elkhrachy, I., 2021. Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alexandria Engineering Journal. 60(6), 5579-5590. https://doi.org/10.1016/j.aej.2021.04.011
    37. Eltner, A., & Schneider, D., 2015. Analysis of Different Methods for 3D Reconstruction of Natural Surfaces from Parallel-Axes UAV Images. The Photogrammetric Record. 30(151), 279-299. https://doi.org/10.1111/phor.12115
    38. ESDM, 2011. Minister of Energy and Mineral Resources Regulation Number 15 Year 2011. https://jdih.esdm.go.id/index.php/web/result/741/detail, (accessed 10 February, 2018)
    39. ESDM, 2017. Press Release : Update on the Volcanic Activity of Mount Agung (1 December 2017 21:00 localtime GMT+8). https://magma.vsi.esdm.go.id/press/view.php?id=117, (accessed 10 March, 2018)
    40. Feurer, D., & Vinatier, F., 2018. Joining multi-epoch archival aerial images in a single SfM block allows 3-D change detection with almost exclusively image information. Isprs Journal of Photogrammetry and Remote Sensing. 146, 495-506. https://doi.org/10.1016/j.isprsjprs.2018.10.016
    41. Fontijn, K., Costa, F., Sutawidjaja, I., Newhall, C.G., & Herrin, J.S., 2015. A 5000-year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implications for eruption frequency and volcanic hazards. Bulletin of Volcanology. 77(7), https://doi.org/10.1007/s00445-015-0943-x
    42. Forlani, G., Dall’Asta, E., Diotri, F., Cella, U.M.d., Roncella, R., & Santise, M., 2018. Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sensing. 10(2), 10.3390/rs10020311
    43. Fraser, C., 2018. Camera calibration considerations for UAV photogrammetry. ISPRS Technical Commission II Symposium 2018 "Towards Photogrammetry 2020". Riva del Garda, Italy. (accessed 12 April 2019)
    44. Fraser, C.S., 1997. Digital camera self-calibration. Isprs Journal of Photogrammetry and Remote Sensing. 52(4), 149-159. https://doi.org/10.1016/S0924-2716(97)00005-1
    45. Fu, Q., Celenk, M., & Wu, A., 2018. An improved algorithm based on CLAHE for ultrasonic well logging image enhancement. Cluster Computing. 22(S5), 12609-12618. 10.1007/s10586-017-1692-8
    46. Garg, D., Garg, N.K., & Kumar, M., 2018. Underwater image enhancement using blending of CLAHE and percentile methodologies. Multimedia Tools and Applications. 77(20), 26545-26561. 10.1007/s11042-018-5878-8
    47. Ghilani, C.D., 2017. Adjustment computations, 6th ed, John Wiley & Sons, Inc.: Hoboken, NJ, USA. https://doi.org/10.1002/9781119390664.ch4
    48. González-Aguilera, D., López Fernández, L., Rodríguez-Gonzálvez, P., Guerrero, D., Hernandez, D., Remondino, F., Menna, F., Nocerino, E., Toschi, I., Ballabeni, A., & Gaiani, M., 2016. DEVELOPMENT OF AN ALL-PURPOSE FREE PHOTOGRAMMETRIC TOOL. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLI-B6, 31-38. 10.5194/isprsarchives-XLI-B6-31-2016
    49. GreenValley, I., 2019. LiDAR360 V4.0 user guide. https://greenvalleyintl.com/wp-content/lidar360_en/, (accessed 10 July, 2019)
    50. Griffiths, D., & Burningham, H., 2018. Comparison of pre- and self-calibrated camera calibration models for UAS-derived nadir imagery for a SfM application. Progress in Physical Geography: Earth and Environment. 43(2), 215-235. 10.1177/0309133318788964
    51. Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M.E., Meng, J., Mulligan, M., Nilsson, C., Olden, J.D., Opperman, J.J., Petry, P., Reidy Liermann, C., Sáenz, L., Salinas-Rodríguez, S., Schelle, P., Schmitt, R.J.P., Snider, J., Tan, F., Tockner, K., Valdujo, P.H., van Soesbergen, A., & Zarfl, C., 2019. Mapping the world’s free-flowing rivers. Nature. 569(7755), 215-221. https://doi.org/10.1038/s41586-019-1111-9
    52. Grilli, E., Menna, F., & Remondino, F., 2017. A Review of Point Clouds Segmentation and Classification Algorithms. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-2/W3, 339-344. 10.5194/isprs-archives-XLII-2-W3-339-2017
    53. Habib, A., Detchev, I., & Kwak, E., 2014. Stability analysis for a multi-camera photogrammetric system. Sensors. 14(8), 15084-15112. https://doi.org/10.3390/s140815084
    54. Harwin, S., Lucieer, A., & Osborn, J., 2015. The Impact of the Calibration Method on the Accuracy of Point Clouds Derived Using Unmanned Aerial Vehicle Multi-View Stereopsis. Remote Sensing. 7(9), 10.3390/rs70911933
    55. He, F., Zhou, T., Xiong, W., Hasheminnasab, S., & Habib, A., 2018. Automated Aerial Triangulation for UAV-Based Mapping. Remote Sensing. 10(12), 10.3390/rs10121952
    56. He, Y., Yang, J., Hou, X., Pang, S., & Chen, J., 2021. ICP registration with DCA descriptor for 3D point clouds. Optics Express. 29(13), 20423-20439. 10.1364/OE.425622
    57. Herd, R.A., Edmonds, M., & Bass, V.A., 2005. Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12–13 July 2003. Journal of Volcanology and Geothermal Research. 148(3-4), 234-252. https://doi.org/10.1016/j.jvolgeores.2005.05.003
    58. Huang, W., Jiang, S., & Jiang, W., 2021. Camera Self-Calibration with GNSS Constrained Bundle Adjustment for Weakly Structured Long Corridor UAV Images. Remote Sensing. 13(21), 10.3390/rs13214222
    59. Huang, X., Wan, X., & Peng, D., 2020. Robust Feature Matching with Spatial Smoothness Constraints. Remote Sensing. 12(19), 3158-3178. https://doi.org/10.3390/rs12193158
    60. Hubbard, B.E., Sheridan, M.F., Carrasco-Núñez, G., Díaz-Castellón, R., & Rodríguez, S.R., 2007. Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. Journal of Volcanology and Geothermal Research. 160(1), 99-124. https://doi.org/10.1016/j.jvolgeores.2006.09.005
    61. Huff, W.D., & Owen, L.A., 2015. Volcanic Landforms and Hazards, Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://www.sciencedirect.com/science/article/pii/B9780124095489095129
    62. Huggel, C., Schneider, D., Miranda, P.J., Delgado Granados, H., & Kääb, A., 2008. Evaluation of ASTER and SRTM DEM data for lahar modeling: A case study on lahars from Popocatépetl Volcano, Mexico. Journal of Volcanology and Geothermal Research. 170(1-2), 99-110. https://doi.org/10.1016/j.jvolgeores.2007.09.005
    63. Iverson, R.M., Schilling, S.P., & Vallance, J.W., 1998. Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin. 110(8), 972-984. https://doi.org/10.1130/0016-7606(1998)110%3C0972:ODOLIH%3E2.3.CO;2
    64. James, M.R., Antoniazza, G., Robson, S., & Lane, S.N., 2020. Mitigating systematic error in topographic models for geomorphic change detection: accuracy, precision and considerations beyond off‐nadir imagery. Earth Surface Processes and Landforms. 45(10), 2251-2271. https://doi.org/10.1002/esp.4878
    65. James, M.R., & Robson, S., 2014. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms. 39(10), 1413-1420. https://doi.org/10.1002/esp.3609
    66. Jaud, M., Passot, S., Allemand, P., Le Dantec, N., Grandjean, P., & Delacourt, C., 2018. Suggestions to Limit Geometric Distortions in the Reconstruction of Linear Coastal Landforms by SfM Photogrammetry with PhotoScan® and MicMac® for UAV Surveys with Restricted GCPs Pattern. Drones. 3(1), 2. https://doi.org/10.3390/drones3010002
    67. Jen, C.H., Chyi, S.J., Hsiao, L.L., Wu, M.S., & Lei, H.F., 2012. The changing of coastal landform at Chikou barrier island and lagoon coast, Tainan, Southwestern Taiwan. EGU General Assembly Conference. 10097. https://ui.adsabs.harvard.edu/abs/2012EGUGA..1410097J
    68. Jiang, S., Jiang, W., Huang, W., & Yang, L., 2017. UAV-Based Oblique Photogrammetry for Outdoor Data Acquisition and Offsite Visual Inspection of Transmission Line. Remote Sensing. 9(3), 278-303. https://doi.org/10.3390/rs9030278
    69. Johnson, A.E., & Hebert, M., 1999. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 21(5), 433-449. 10.1109/34.765655
    70. Kasprak, A., Bransky, N.D., Sankey, J.B., Caster, J., & Sankey, T.T., 2019. The effects of topographic surveying technique and data resolution on the detection and interpretation of geomorphic change. Geomorphology. 333, 1-15. https://doi.org/10.1016/j.geomorph.2019.02.020
    71. Kataoka, K.S., Matsumoto, T., Saito, T., Kawashima, K., Nagahashi, Y., Iyobe, T., Sasaki, A., & Suzuki, K., 2018. Lahar characteristics as a function of triggering mechanism at a seasonally snow-clad volcano: contrasting lahars following the 2014 phreatic eruption of Ontake Volcano, Japan. Earth, Planets and Space. 70(1), 113. https://doi.org/10.1186/s40623-018-0873-x
    72. Kelly, S.A., & Belmont, P., 2018. High Resolution Monitoring of River Bluff Erosion Reveals Failure Mechanisms and Geomorphically Effective Flows. Water. 10(4), 394-421. https://doi.org/10.3390/w10040394
    73. Kogut, T., & Weistock, M., 2019. Classifying airborne bathymetry data using the Random Forest algorithm. Remote Sensing Letters. 10(9), 874-882. https://doi.org/10.1080/2150704X.2019.1629710
    74. Koschitzki, R., Schwalbe, E., Krohnert, M., Cardenas, C., & Maas, H., 2018. Multi-temporal photogrammetric analysis to monitoring the river Las Minas, Punta Arenas, Chile. IEEE Latin America Transactions. 16(9), 2481-2489. https://doi.org/10.1109/TLA.2018.8789572
    75. Kowalczuk, Z., & Szymański, K., 2019. Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model. IFAC-PapersOnLine. 52(8), 416-421. 10.1016/j.ifacol.2019.08.099
    76. Kubanek, J., Westerhaus, M., Schenk, A., Aisyah, N., Brotopuspito, K.S., & Heck, B., 2015. Volumetric change quantification of the 2010 Merapi eruption using TanDEM-X InSAR. Remote Sensing of Environment. 164, 16-25. https://doi.org/10.1016/j.rse.2015.02.027
    77. Lee, S., Park, J., Choi, E., & Kim, D., 2021. Factors Influencing the Accuracy of Shallow Snow Depth Measured Using UAV-Based Photogrammetry. Remote Sensing. 13(4), 828-847. https://doi.org/10.3390/rs13040828
    78. Lee, S.B., Song, M., Kim, S., & Won, J.-H., 2020. Change Monitoring at Expressway Infrastructure Construction Sites Using Drone. Sensors and Materials. 32(11), 10.18494/sam.2020.2971
    79. Li, W., Sun, K., Li, D., Bai, T., & Sui, H., 2017. A New Approach to Performing Bundle Adjustment for Time Series UAV Images 3D Building Change Detection. Remote Sensing. 9(6), https://doi.org/10.3390/rs9060625
    80. Lim, M., Dunning, S.A., Burke, M., King, H., & King, N., 2015. Quantification and implications of change in organic carbon bearing coastal dune cliffs: A multiscale analysis from the Northumberland coast, UK. Remote Sensing of Environment. 163, 1-12. https://doi.org/10.1016/j.rse.2015.01.034
    81. Ma, J., Fan, X., Yang, S.X., Zhang, X., & Zhu, X., 2017. Contrast Limited Adaptive Histogram Equalization based fusion for underwater image enhancement. Preprints. 1-27. https://doi.org/10.20944/preprints201703.0086.v1
    82. Makadia, A., Patterson, A., & Daniilidis, K., 2006. Fully Automatic Registration of 3D Point Clouds. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). 10.1109/CVPR.2006.122 (accessed
    83. Martins, B.H., Suzuki, M., Yastika, P.E., & Shimizu, N., 2020. Ground Surface Deformation Detection in Complex Landslide Area—Bobonaro, Timor-Leste—Using SBAS DInSAR, UAV Photogrammetry, and Field Observations. Geosciences. 10(6), 10.3390/geosciences10060245
    84. Mazzoleni, M., Paron, P., Reali, A., Juizo, D., Manane, J., & Brandimarte, L., 2020. Testing UAV-derived topography for hydraulic modelling in a tropical environment. Natural Hazards. 103(1), 139-163. https://doi.org/10.1007/s11069-020-03963-4
    85. Menna, F., Nocerino, E., Ural, S., & Gruen, A., 2020. Mitigating Image Residuals Systematic Patterns in Underwater Photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLIII-B2-2020, 977-984. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-977-2020
    86. Mohan, S., & Simon, P., 2020. Underwater Image Enhancement based on Histogram Manipulation and Multiscale Fusion. Procedia Computer Science. 171, 941-950. https://doi.org/10.1016/j.procs.2020.04.102
    87. Mothes, P.A., & Vallance, J.W., 2015. Chapter 6 - Lahars at Cotopaxi and Tungurahua Volcanoes, Ecuador: Highlights from Stratigraphy and Observational Records and Related Downstream Hazards, in: J.F. Shroder, & P. Papale (Eds.), Volcanic Hazards, Risks and Disasters. Elsevier, Boston, pp. 141-168. https://www.sciencedirect.com/science/article/pii/B978012396453300006X
    88. Mousavi, V., Varshosaz, M., & Remondino, F., 2021. Evaluating Tie Points Distribution, Multiplicity and Number on the Accuracy of Uav Photogrammetry Blocks. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLIII-B2-2021, 39-46. 10.5194/isprs-archives-XLIII-B2-2021-39-2021
    89. Nagarajan, S., & Schenk, T., 2016. Feature-based registration of historical aerial images by Area Minimization. Isprs Journal of Photogrammetry and Remote Sensing. 116, 15-23. https://doi.org/10.1016/j.isprsjprs.2016.02.012
    90. Nahon, A., Molina, P., Blázquez, M., Simeon, J., Capo, S., & Ferrero, C., 2019. Corridor Mapping of Sandy Coastal Foredunes with UAS Photogrammetry and Mobile Laser Scanning. Remote Sensing. 11(11), 1352-1366. https://doi.org/10.3390/rs11111352
    91. Ning, X., Li, F., Tian, G., & Wang, Y., 2018. An efficient outlier removal method for scattered point cloud data. PloS one. 13(8), https://doi.org/10.1371/journal.pone.0201280
    92. Nota, E.W., Nijland, W., & de Haas, T., 2022. Improving UAV-SfM time-series accuracy by co-alignment and contributions of ground control or RTK positioning. International Journal of Applied Earth Observation and Geoinformation. 109, 102772. https://doi.org/10.1016/j.jag.2022.102772
    93. Oniga, V.-E., Pfeifer, N., & Loghin, A.-M., 2018. 3D Calibration Test-Field for Digital Cameras Mounted on Unmanned Aerial Systems (UAS). Remote Sensing. 10(12), 2017-2039. https://doi.org/10.3390/rs10122017
    94. Ozulu, İ., & Gökgöz, T., 2018. Examining the Stream Threshold Approaches Used in Hydrologic Analysis. ISPRS International Journal of Geo-Information. 7(6), https://doi.org/10.3390/ijgi7060201
    95. Pallister, J.S., Schneider, D.J., Griswold, J.P., Keeler, R.H., Burton, W.C., Noyles, C., Newhall, C.G., & Ratdomopurbo, A., 2013. Merapi 2010 eruption—Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. Journal of Volcanology and Geothermal Research. 261, 144-152. https://doi.org/10.1016/j.jvolgeores.2012.07.012
    96. Pistolesi, M., Cioni, R., Rosi, M., & Aguilera, E., 2014. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology. 207, 51-63. http://dx.doi.org/10.1016/j.geomorph.2013.10.026
    97. Pizer, S.M., Johnston, R.E., Ericksen, J.P., Yankaskas, B.C., & Muller, K.E., 1990. Contrast-limited adaptive histogram equalization: speed and effectiveness. Proceedings of the First Conference on Visualization in Biomedical Computing. 337-345. https://doi.org/10.1109/VBC.1990.109340
    98. Polic, M., Steidl, S., Albl, C., Kukelova, Z., & Pajdla, T., 2020. Uncertainty Based Camera Model Selection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR42600.2020.00603 (accessed
    99. Qin, R., Tian, J., & Reinartz, P., 2016. 3D change detection – Approaches and applications. Isprs Journal of Photogrammetry and Remote Sensing. 122, 41-56. https://doi.org/10.1016/j.isprsjprs.2016.09.013
    100. Rau, J.Y., Jhan, J.P., & Andaru, R., 2019. Landslide deformation monitoring by three-camera imaging system. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. 42(2/W13), 559-565. 10.5194/isprs-archives-XLII-2-W13-559-2019
    101. Rau, J.Y., & Yeh, P.C., 2012. A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration. Sensors. 12(8), 11271-11293. https://doi.org/10.3390/s120811271
    102. Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J.P., 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. Isprs Journal of Photogrammetry and Remote Sensing. 67, 93-104. 10.1016/j.isprsjprs.2011.11.002
    103. Rosati, J.D., 2005. Concepts in Sediment Budgets. Journal of Coastal Research. 212, 307-322. https://doi.org/10.2112/02-475A.1
    104. Rusnák, M., Sládek, J., Kidová, A., & Lehotský, M., 2018. Template for high-resolution river landscape mapping using UAV technology. Measurement. 115, 139-151. https://doi.org/10.1016/j.measurement.2017.10.023
    105. Sanchez, J., Denis, F., Checchin, P., Dupont, F., & Trassoudaine, L., 2017. Global registration of 3D LiDAR point clouds based on scene features: Application to structured environments. Remote Sensing. 9(10), 1014-1038. https://doi.org/10.3390/rs9101014
    106. Sanz-Ablanedo, E., Chandler, J., Rodríguez-Pérez, J., & Ordóñez, C., 2018. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sensing. 10(10), 1606-1625. https://doi.org/10.3390/rs10101606
    107. Sanz‐Ablanedo, E., Chandler, J.H., Ballesteros‐Pérez, P., & Rodríguez‐Pérez, J.R., 2020. Reducing systematic dome errors in digital elevation models through better UAV flight design. Earth Surface Processes and Landforms. 45(9), 2134-2147. 10.1002/esp.4871
    108. Schilling, S.P., 2014. Laharz_py: GIS tools for automated mapping of lahar inundation hazard zones, Reston, VA. http://pubs.er.usgs.gov/publication/ofr20141073
    109. Schilling, S.P., Thompson, R.A., Messerich, J.A., & Iwatsubo, E.Y., 2008. Use of digital aerophotogrammetry to determine rates of lava dome growth, Mount St. Helens, Washington, 2004-2005. U.S. Geological Survey, Reston, VA. http://pubs.er.usgs.gov/publication/pp17508
    110. Scott, T., Masselink, G., O'Hare, T., Saulter, A., Poate, T., Russell, P., Davidson, M., & Conley, D., 2016. The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England. Marine Geology. 382, 224-241. https://doi.org/10.1016/j.margeo.2016.10.011
    111. Self, S., & Rampino, M.R., 2012. The 1963-1964 eruption of Agung volcano (Bali, Indonesia). Bulletin of Volcanology. 74(6), 1521-1536. https://doi.org/10.1007/s00445-012-0615-z
    112. Solazzo, D., Sankey, J.B., Sankey, T.T., & Munson, S.M., 2018. Mapping and measuring aeolian sand dunes with photogrammetry and LiDAR from unmanned aerial vehicles (UAV) and multispectral satellite imagery on the Paria Plateau, AZ, USA. Geomorphology. 319, 174-185. https://doi.org/10.1016/j.geomorph.2018.07.023
    113. Suharyanto, Hasibuan, Z.A., Andono, P.N., Pujiono, D., & Setiadi, R.I.M., 2021. Contrast Limited Adaptive Histogram Equalization for Underwater Image Matching Optimization use SURF. Journal of Physics: Conference Series. 1803(1), 012008. 10.1088/1742-6596/1803/1/012008
    114. Tanguy, J.C., Ribière, Ch, Scarth, A, Tjetjep, W.S, 1998. Victims from volcanic eruptions: a revised database. Bull Volcanol. 60, 137-144. https://doi.org/10.1007/s004450050222
    115. Tomaštík, J., Mokroš, M., Surový, P., Grznárová, A., & Merganič, J., 2019. UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sensing. 11(6), 10.3390/rs11060721
    116. Tombari, F., Salti, S., & Di Stefano, L., 2010. Unique Signatures of Histograms for Local Surface Description. Computer Vision – ECCV 2010. Berlin, Heidelberg. (accessed
    117. Tournadre, V., Pierrot-Deseilligny, M., & Faure, P.H., 2015. Uav Linear Photogrammetry. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-3/W3, 327-333. https://doi.org/10.5194/isprsarchives-XL-3-W3-327-2015
    118. Truong Giang, N., Muller, J.M., Rupnik, E., Thom, C., & Pierrot-Deseilligny, M., 2018. Second Iteration of Photogrammetric Processing to Refine Image Orientation with Improved Tie-Points. Sensors. 18(7), https://doi.org/10.3390/s18072150
    119. Vousdoukas, M.I., Almeida, L.P.M., & Ferreira, Ó., 2012. Beach erosion and recovery during consecutive storms at a steep-sloping, meso-tidal beach. Earth Surface Processes and Landforms. 37(6), 583-593. https://doi.org/10.1002/esp.2264
    120. Wackrow, R., & Chandler, J.H., 2008. A convergent image configuration for DEM extraction that minimises the systematic effects caused by an inaccurate lens model. The Photogrammetric Record. 23(121), 6-18. https://doi.org/10.1111/j.1477-9730.2008.00467.x
    121. Wadge, G., Oramas Dorta, D., & Cole, P.D., 2006. The magma budget of Volcán Arenal, Costa Rica from 1980 to 2004. Journal of Volcanology and Geothermal Research. 157(1-3), 60-74. https://doi.org/10.1016/j.jvolgeores.2006.03.037
    122. Wauchope, H.S., Amano, T., Geldmann, J., Johnston, A., Simmons, B.I., Sutherland, W.J., & Jones, J.P.G., 2021. Evaluating Impact Using Time-Series Data. Trends in Ecology & Evolution. 36(3), 196-205. https://doi.org/10.1016/j.tree.2020.11.001
    123. Williams, R., 2012. DEMs of difference. Geomorphological Techniques; Cook, S.J., Clarke, L.E.,Nield, J.M., Eds.; British Society for Geomorphology: London, UK. 2(3.2), 1-17.
    124. Wolf, P.R., Dewitt, B.A., & Wilkinson, B.E., 2014. Elements of Photogrammetry with Applications in GIS, Fourth edition. ed. McGraw-Hill Education, New York. https://www.accessengineeringlibrary.com/content/book/9780071761123
    125. Yuan, M., Li, X., Cheng, L., Li, X., & Tan, H., 2022. A Coarse-to-Fine Registration Approach for Point Cloud Data with Bipartite Graph Structure. Electronics. 11(2), 10.3390/electronics11020263
    126. Zambanini, S., 2019. Feature-based groupwise registration of historical aerial images to present-day ortho-photo maps. Pattern Recognition. 90, 66-77. http://dx.doi.org/10.1016/j.patcog.2019.01.024
    127. Zen, M.T., & Hadikusumo, D., 1964. Preliminary report on the 1963 eruption of Mt.Agung in Bali (Indonesia). Bulletin Volcanologique. 27(1), 269-299. https://doi.org/10.1007/BF02597526
    128. Zhang, H., Aldana Jague, E., Clapuyt, F., Wilken, F., Vanacker, V., & Oost, K., 2019. Evaluating the potential of PPK direct georeferencing for UAV-SfM photogrammetry and precise topographic mapping. Earth Surface Dynamics Discussions. 1-34. https://doi.org/10.5194/ESURF-2019-2
    129. Zhao, C., & Goshtasby, A.A., 2016. Registration of multitemporal aerial optical images using line features. Isprs Journal of Photogrammetry and Remote Sensing. 117, 149-160. https://doi.org/10.1016/j.isprsjprs.2016.04.002
    130. Zhou, Y., Rupnik, E., Meynard, C., Thom, C., & Pierrot-Deseilligny, M., 2019. Simulation and Analysis of Photogrammetric UAV Image Blocks—Influence of Camera Calibration Error. Remote Sensing. 12(1), 22-39. https://doi.org/10.3390/rs12010022

    下載圖示 校內:2024-08-02公開
    校外:2024-08-02公開
    QR CODE