| 研究生: |
余孝緯 Yu, Shiao-Wei |
|---|---|
| 論文名稱: |
共平面放射治療模擬系統 The Simulation System of Co-planar Radiotherapy |
| 指導教授: |
鄭國順
Cheng, Kuo-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 反向治療 、最佳化 、遺傳基因演算法 |
| 外文關鍵詞: | Genetic algorithm, Optimization, Inverse treatment planning |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是發展以醫用直線加速器殺死腫瘤細胞且正常組織受到的傷害最小的技術,以解決傳統正向治療中,常面臨無法將治療射束完全限制在腫瘤體積範圍內的問題。目前研究的目的是依據反向治療之觀念(Inverse treatment planning)配合遺傳基因演算法(Genetic algorithm)找出最佳的放射擺設位置。之後建立一套電腦模擬劑量計算系統與發展圖形化使用者介面(GUI),計算出腫瘤區域與劑量涵蓋範圍與相關性,最終算出最佳化(Optimization)擺設位置與劑量吸收情形。本研究已建立二維放射線劑量計算模式,延伸至三維模擬治療系統劑量模式。
The goal of radiation dosage distribution profiles is to deliver a high dose target volumes and reduce damage for the surrounding healthy tissues. In traditional, the forward methods are applied to establish the dose distributions. It is a kind of trial-and-error method to waste a lot of time, however, maybe cannot find the optimal solution. In order to more increase the accuracy of dose computation, the inverse models are introduced in this study to find and solve the optimization beam angles and positions. The GA-based computerized software with a 2D graphic-user-interface has been developed to solve the optimization problem and to control the beams positions that replace the manual arranged beam positions in radiotherapy treatment planning.
[1] T. Miyazawa, R. Yoshida, and T. Otsuki, “Visualization of 3-D medical images for radiotherapy planning,” IEEE Trans. Nucl. Sci., pp. 1553-1557, 1991.
[2] Y. Huang, S West, and J. Antoine, “Quality improvement in radiation therapy by 3D treatment planning,” in Proc. 22nd Ann. Int. Con. IEEE Eng. Med. Biol. Soc., pp. 518-519, 2000.
[3] Y. Yu, J. B. Zhang, R. A. Brasacchio, and P. G. Okunieff, “Automated treatment planning engine for prostate seed implant brachytherapy,” Int. J. Radiat. Oncol. Biol. Phys., vol 43(3), pp. 647-652, 1999.
[4] Y. Yu, J. B. Zhang, G. Cheng, and P. Okunieff, “Multi-objective optimization in radiotherapy: applications to stereotactic radiosurgery and prostate brachytherapy,” Artif. Intell. Med., vol. 19(1), pp. 39 – 51, 2000.
[5] B. A. Fraass, “The development of conformal radiation therapy,” Med. Phys., vol. 22(11), pp. 2, 1995.
[6] C.J. Lim, S.U. Ahmad, A. R. Leyman, and M. H. Er, “A multi-modal approach to radiotherapy treatment planning optimization,” in Proc. 22nd Ann. Int. Con. IEEE Eng. Med. Biol. Soc., vol. 3, pp. 1834-1836, 2000.
[7] S.U. Ahmad, A. R. Leyman, C.J. Lim, and M. H. Er, “A Hybrid optimization approach for the inverse problem of radiotherapy,” in Proc. 22nd Ann. Int. Con. IEEE Eng. Med. Biol. Soc., vol. 3, pp. 1834-1836, 2000.
[8] E. M. Messing, J. B. Y. Zhang, D. J. Rubens, and J. G. Strang, “Intraoperative optimized inverse planning for prostate brachytherapy:early experience,” Int. J. Radiat. Oncol. Biol. Phys., vol. 44(4), pp. 801-808, 1999.
[9] M. Ringor, and L. Papiez, “Inverse planning and optimization:a comparison of solutions,” Radia. Phys. and Chem., 53, pp.263-274, 1998.
[10] M. J. Zelefsky, Y. Yamada, G. Cohen, and A. Y. C. Fung, “Postimplantation dosimetric analysis of permanent transperineal prostate implantation:improved dose distributions with an intraoperative computer-optimized conformal planning technique,” Int. J. Radiat. Oncol. Biol. Phys., vol. 25(2), pp. 601-608, 2000.
[11] I. I. Rosen, K. S. Lam, R. G. Lane, and S. M. Morrill, “Comparison of simulated annealing algorithms for conformal therapy treatment planning,” Int. J. Radiat. Oncol. Biol. Phys., vol 33(5), pp. 1091-1099, 1995.
[12] F. Kaibuki, and K. Ogawa, “A new optimization method of dose distribution for intracavitary radiation therapy by simulated annealing,” IEEE Trans. Nucl. Sci., vol.2, pp. 1360-1362, 1993.
[13] S. Webb, “Optimization of conformal radiotherapy dose distributions by simulated annealing,” Phys. Med. Biol., vol. 34, no. 10, pp. 1349-1370,1989.
[14] O. C. L. Haas, K. J. Burnham, and J. A. Mills, “On improving physical selectivity in the treatment of cancer: a systems modeling and optimization approach,” Control Eng. Pract., vol. 5, no. 12, pp. 1739-1745, 1997.
[15] C. A. Petez and L. W. Brady, Principles and Practice of Radiation Oncology, New York: J.B. Lippincott, 1992.
[16] J. R. Williams and D. I. Thwaites, Radiotherapy physics in practice, New York: Oxford University, 1993.
[17] F. M. Khan, The physics of radiation therapy, Baltimore:Williams and Wilkins, 1984.
[18] A.R. Leyman, S.U. Ahmad, L. C. Jen, and H Abut, “Genetic algorithms applied to beam Intensity modulation in radiotherapy treatment planning,” in Proc. 21st Ann. Int. Con. IEEE Eng. Med. Biol. Soc., vol.2, pp. 887, 1999.
[19] C. D. Edirisinghe, R. S. Acharya, and C. Sibata, “Optimization radiation therapy planning using genetic algorithms,” in Proc. 16th Ann. Int. Con. IEEE Eng. Med. Biol. Soc., vol.2, pp. 1384-1385, 1994.
[20] A.Y.C. Fung, K. M. Alektiar, D. A. Silvern, and M. Zaider, “Treatment-plan optimization for soft-tissue sarcoma brachytherapy using a genetic algorithm,” Int. J. Radiat. Oncol. Biol. Phys., vol. 47(5), pp. 1385-1395, 2000.
[21] G. A. Ezzell and L. Gaspar, “Application of a genetic algorithm to optimizing radiation therapy treatment plans for pancreatic carcinoma,” Med. Dosi., vol. 25(2), pp. 93-97, 2000.
[22] G. Yang, L. E. Reinstein, S. Pai, and Z. Xu, “A new genetic algorithm technique in optimization of permanent 125I prostate implants,” Med. Phys., vol. 25(12), 1998.
[23] Y. Yu, “Multiobjective decision theory for computational optimization in radiation therapy,” Med. Phys., vol. 24(9), 1997.
[24] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996.
[25] D. Lawrence, Handbook of genetic algorithms, New York:Van Nostrand Reinhold, 1991.
[26] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd Edition, New York:Springer, 1994.
[27] D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, New York:Addison Wesley, 1989.
[28] N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Trans. Biomed. Eng., vol. 9(1), pp. 62-66, 1979.
[29] X. Wu and Y. Zhu, “A mixed-encoding genetic algorithm with beam constraint for conformal radiotherapy treatment planning” Med. Phys., vol. 27(11), 2000.
[30] X. Wu and Y. Zhu, “An optimization methods for importance factors and beams weights based on genetic algorithms for radiotherapy treatment planning,” Phys. Med. Biol., vol. 46, pp. 1085-1099, 2001.
[31] X. Wu and Y. Zhu, “A beam weight determination method based on Genetic algorithms radiotherapy treatment planning,” in Proc. 22nd Ann. Int. Con. IEEE Eng. Med. Biol. Soc., vol. 3, pp. 1842-1845, 2000.
[32] O. C. L. Haas, K. J. Burnham, and J. A. Mills, “Hybrid optimization technique for radiotherapy treatment planning,” in Proc. 20nd Ann. Int. Con. IEEE Eng. Med. Biol. Soc., pp. 368-372, 1998.
校內:2101-08-22公開