| 研究生: |
蔣克弘 Chiang, Co-Hung |
|---|---|
| 論文名稱: |
雙級複金屬燈電子式安定器之研製 Study and Implementation of a Two-Stage Electronic Ballast for Metal Halide Lamp |
| 指導教授: |
梁從主
Liang, Tsorng-Juu |
| 共同指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 高功率因數 、複金屬燈 、頻率調變 |
| 外文關鍵詞: | high power factor, metal halide lamp, frequency modulation |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本碩論主要研製「雙級複金屬燈電子式安定器」,此電子式安定器由昇壓型功率因數修正電路、串聯諧振並聯負載半橋變流器、頻率調變控制電路與微控制器PIC12F675所組成,並使用頻率調變技術之高頻弦波電流驅動複金屬燈管以避免音頻共振現象。燈管功率之控制則偵測直流鏈功率以確保燈管功率在設計範圍之內。文中首先介紹複金屬燈之動作原理與特性,說明三級式電子式安定器之電路架構,並描述本文使用之兩級式電子式安定器與頻率調變分析。最後依據所推導電路之參數實際製作一可操作於90至264 Vac通用輸入電壓之400 W複金屬燈電子式安定器。實驗結果顯示其具有良好之定功率能力,電路之最高效率為94.8 %,且功率因數值可達到0.99。
A two-stage electronic ballast for 400-W metal halide lamp with frequency modulation control is presented in this thesis. This electronic ballast consists of a boost PFC stage, SRPL half bridge inverter stage, frequency modulation control circuit and constant power control circuit with digital microcontroller PIC12F675. The boost PFC circuit is operated in continuous conduction mode to achieve high power factor. The series resonant parallel loaded half bridge inverter drives the HID lamp with a high frequency sinusoidal wave current by frequency modulation to avoid acoustic resonance. Finally, a laboratory prototype of 400 W electronic ballast for metal halide lamp with 90~264 Vac universal input voltage is implemented. The measured results show that the proposed ballast can drive HID lamps with constant power. The power factor is 0.99 and the maximum efficiency of the ballast is 94.8%.
參考文獻
[1] 小泉實,「照明設計實務入門」,全華科技圖書股份有限公司,民國九十一年。
[2] 「電光源原理」,凡異出版社,民國七十六年。
[3] 黃哲平,「照明設計」,東華科技圖書股份有限公司,民國七十五年。
[4] L. M. F. Morais, P. F. D. Garcia, S. I. Seleme, and J. P. C. Cortizo, “Forced oscillation in LC circuit used for the ignition of discharge lamps,” IET Electr. Power Appl., vol. 1, no. 1, pp. 93–99, 2008.
[5] R. S. Manuel, L. C. Emilio, J. M. Alonso, J. Ribas, J. Cardesín, J. C. Antonio, and G. G. Jorge, “Complete low-cost two-stage electronic ballast for 70-W high-pressure sodium vapor lamp based on current-mode-controlled buck–boost inverter,” IEEE Trans. Ind. Electron., vol. 41, no. 3, pp. 728-734, May 2005.
[6] G. G. Jorge, J. Cardesin, J. Ribas, A. J. Calleja, L. C. Emilio, M. R. Secades, and J. M. Alonso, “New control strategy in a square-wave inverter for low wattage metal halide lamp supply to avoid acoustic resonances,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 243-253, Jan. 2006.
[7] M. A. D. Costa, J. M. Alonso, J. Garcia, J. Cardesin, and M. R. Secades, “Acoustic resonance characterization of low-wattage metal-halide lamps under low-frequency square-waveform operation,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 735-743, May 2007.
[8] L. M. F. Morais, P. F. D. Garcia, S. I. Seleme, and P. C. Cortizo, “Electronic ballast for high pressure sodium lamps without acoustic resonance via controlled harmonic injection synthesized with PWM,” in Proc. IEEE PESC, pp. 1107-1112, 2008.
[9] J. M. Alonso, J. Ribas, M. R. Secades, J. García, J. Cardesín, and M. A. Dalla Costa, “Evaluation of high-frequency sinusoidal waveform superposed with third harmonic for stable operation of metal halide lamps,” IEEE Trans. Ind. Electron., vol. 41, no. 3, pp. 721-727, May 2005.
[10] M. Gulko and S. B. Yaakov, “A MHz electronic ballast for automotive-type HID lamps,” in Proc. IEEE PESC, vol. 1, pp. 39-45, 1997.
[11] M. Ponce, A. Lopez, J. Correa, J. Arau, and J. M. Alonso, “Electronic ballast for HID lamps with high frequency square waveform to avoid acoustic resonances,” in Proc. IEEE APEC, pp. 658–663, 2001.
[12] C. A. Cheng and Y. C. Wu, “A novel single-stage low-frequency square-wave driven electronic ballast for HID lamps,” IEEE Trans. Ind. Electron., pp. 1-7, Oct. 2008.
[13] T. J. Liang, C. A. Cheng, and W. S. Lai, “A novel two-stage high-power-factor low-frequency HID electronic ballast,” IEEE Trans. Ind. Electron., vol. 3, pp. 2607-2612, Apr. 2004.
[14] T. J. Liang and C. M. Huang, “Interleaving controlled three-leg electronic ballast for dual-HID-lamps,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1401-1409, May 2008.
[15] C. A. Cheng and Y. M. Cheng, “A novel two-stage electronic ballast for metal-halide-type HID lamps,” in Proc. IEEE TENCON, pp. 1-4, 2007.
[16] T. J. Liang, C. M. Huang, and J. F. Chen, “Two-stage high power factor electronic ballast for metal-halide lamps,” IEEE Trans. Power Electron., pp. 1-8, Oct. 2008.
[17] T. J. Liang, C. A. Cheng, J. F. Chen, and R. L. Lin, “Single-stage high-power-factor electronic ballast with complex frequency modulation for HID lamps,” IET Electr. Power Appl., vol. 1, no. 3, pp. 377–386, 2007.
[18] L. Laskai, P. N. Enjeti, and I. J. Pitel, “White-noise modulation of high-frequency high-intensity-discharge lamp ballasts,” IEEE Trans. Ind. Appl., vol. 34, no. 3, pp. 597-605, May-Jun., 1998.
[19] H. J. Chiu, T. H. Song, S. J. Cheng, C. H. Li, and Y. K. Lo, “Design and implementation of a single-stage high-frequency HID lamp electronic ballast,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 674-683, Feb. 2008.
[20] J. Q. Wang, D. G. Xu, and H. Yang, “Low-frequency sine wave modulation of 250 W high-frequency metal halide lamp ballasts,” in Proc. IEEE APEC, vol. 2, pp. 1003-1007, 2004.
[21] 林峰瑋,「單級高功因HID燈高頻電子式安定器研製」,中原大學電機工程研究所碩士論文,中華民國九十五年五月。
[22] 鄭竣安,「頻率調變控制之高頻高功因複金屬燈電子式安定器」,國立成功大學電機工程研究所博士論文,中華民國九十五年七月。
[23] 周俊賢,「通訊系統導論」,全華科技圖書股份有限公司,中華民國七十七年。
[24] 徐建國,「使用頻率調變抑制切換式電源供應器的EMI」,國立台灣大學電機工程研究所碩士論文,中華民國九十四年六月。
[25] 朱啟陵,「單級式高功因電子式安定器之電磁干擾雜訊防治」,中原大學電機工程研究所碩士論文,中華民國九十四年六月。
[26] 李肇嚴,「通訊系統」,登文出版社,中華民國七十五年。
[27] 梁振坤,「現代通訊系統原理」,復漢出版社,中華民國七十三年。
[28] K. K. Tse, H. S. Chung, S. Y. Hui, and H. C. So, “Analysis and spectral characteristics of a spread-spectrum technique for conducted EMI suppression,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 399-410, Mar. 2000.
[29] D. González, J. Balcells, A. Santolaria, J. C. L. Bunetel, J. Gago, D. Magnon, and S. Bréhaut, “Conducted EMI reduction in power converters by means of periodic switching frequency modulation,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2271-2281, Nov. 2007.
[30] A. Santolaria, J. Balcells, and D. González, “Theoretical & experimental results of power converter frequency modulation,” IEEE Trans. Ind. Electron., vol. 1, pp. 193-197, Nov. 2002.
[31] G. G. Jorge, J. Cardesin, J. Ribas, A. J. Calleja, M. R. Secades, J. M. Alonso, and E. L. Corominas, “Minimization of acoustic resonances in HID lamps: analysis and comparison of power harmonics content in high frequency non-resonant inverters,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1467-1479, Nov. 2005.
[32] 梁適安,「交換式電源供給器之理論與實務設計」,全華科技圖書股份有限公司, 民國八十三年。
[33] EPARC,「電力電子綜論,全華科技圖書股份有限公司」,民國九十五年。
[34] J. Cardesín, J. García, J. Ribas, J. M. Alonso, A. J. Calleja, E. L. Corominas, M. R. Secades, and M. Dalla, “Low-cost PFC electronic ballast for 250W HID lamps operating as constant power source with 400 kHz switching frequency,” in Proc. IEEE PESC, pp. 1130-1135, 2006.
[35] J. Xu, M. Chen, T. Zhang, and Z. Qian, “A constant power control strategy of electronic ballast for HID Lamp,” in Proc. IEEE IAS, pp. 1130-1135, vol. 3, pp. 1099-1102, 2006.
[36] C. M. Huang, T. J. Liang, R. L. Lin, and J. F. Chen, “A novel constant power control circuit for HID electronic ballast,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 854-862, May 2007.
[37] F. J. Diaz, F. J. Azcondo, C. Brafias, and R. Casanueva, “Control of low-frequency square-wave electronic ballast with resonant ignition using a dsPIC30F2010,” IEEE Trans. Ind. Electron., pp. 3019-3024, Nov. 2007.
[38] F. J. F. Martín, C. B. Viejo, J. C. A. Antón, M. A. P. García, M. R. Secades, and J. M. Alonso, “Analysis and design of a high power factor, single-stage electronic ballast for high-intensity-discharge lamps,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 558-569, Mar. 2003.
[39] M. H. Ohsato and K. Matsuse, “A novel circuit of a single-switch electronic ballast with a boost-type resonant converter,” in Proc. IEEE PEC, pp. 1466-1470, 2008.