| 研究生: |
蘇祐群 Su, You-Cyun |
|---|---|
| 論文名稱: |
多層氧化鋅/富矽氧化物熱電特性實驗與模擬研究 Study on thermoelectric property and simulation of ZnO/Silicon-Rich oxide Multilayers |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 共同指導教授: |
包淳偉
Pao, Chun-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 矽 、ZnO 、熱電效應 、多層結構 |
| 外文關鍵詞: | silicon, ZnO, thermoelectric, multilayer |
| 相關次數: | 點閱:55 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以氧化鋅(ZnO)/富矽氧化物(Silicon-rich oxide,SRO)多層結構熱電材料為主軸,分為模擬與實驗兩部分,研究目的為最佳化薄膜厚度和利用富矽氧化層,進行聲子散射以降低熱導率,進而提升氧化鋅材料的ZTM值。
模擬使用Lammps這套軟體,以分子動力學模擬氧化鋅、矽、氧化鋅/矽多層結構統的熱導率,此部分又分為模型的建構與熱導率計算兩小節探討。模型建構主要是探討原子間勢函數和系綜的選擇,勢函數關係到原子間鍵結的力場大小、角度等等情況,系綜則是選擇在適合的環境下進行模擬計算。熱導率分為不同種類的計算方式,選擇類似實驗的計算方式,有助於計算結果上更接近實驗值。選擇了適合的勢函數、系綜、熱導率計算方式,就能計算出不同厚度、層數的熱導率,結果發現厚度越薄的薄膜有較低的熱導率值,而分層結構的熱導率也比單層薄膜低,可達到個位數值,此預測的結果對應在實驗的ZTM值。
實驗利用濺鍍製作氧化鋅/富矽氧化物的多層膜,此部分分為成分分析與電性量測探討。成分分析部分,我們藉由穿透式電子顯微鏡或是掃瞄式電子顯微鏡觀察薄膜的奈米結構,利用X光繞射儀計算晶粒大小,發現多層結構或是厚度較薄的薄膜具有較小的晶粒,因此可以利用厚度控制晶粒尺寸;而晶粒越小的薄膜通常擁有較低的熱導率,因此可以用膜厚調整熱電性質。電性量測利用Harman method量測計算出ZTM,發現多層膜的ZTM擁有比較好的表現,印證聲子散射對於ZTM的提升有明顯的影響,相較於文獻單層的ZnO薄膜,其熱電優質可以提升3倍左右,ZTM可達到0.32。
除了多層結構對於聲子散射的提升以外,我們也希望探討電導率對ZTM的影響,因此本研究使用氧化鋅鋁(Al-doped Zinc Oxide, AZO, 2%)取代前述多層結構中的ZnO,製作氧化鋅鋁/富矽氧化物的多層結構,發現ZTM也同樣有所成長,相較於文獻單層的AZO薄膜,其熱電優質也可以提升倍左右,ZTM可達到0.48,這樣的結果使得氧化鋅的熱電材料大大的增加了應用的可能性。
In our research, zinc oxide (ZnO) / silicon oxide (silicon oxide) (SRO) multilayers were anylized by simulation and expertiment. We optimize the film thickness and use the silicon-rich oxide layer as phonon scattering to reduce the thermal conductivity.Therefore, it can enhance the ZTM of the zinc oxide material.
The thermal conductivity of zinc oxide, silicon oxide, zinc oxide / silicon multilayer structure was simulated by MD simulation. This part was divided into two sections: model construction and thermal conductivity calculation.In the model construction, it is important to choose potential and ensemble.The potential is the force field and angle of inter-atoms.The ensemble is to choose which condition you want to simulate.In thermal conductivity calculation, there are many different methods to calculate thermal conductivity and we have to try which one is the best to approach our experimental result.
In the simulated result, the thermal conductivity of model is according to its thickness .The thermal conductivity of ZnO/Si multilayer are lower than ZnO or Si. It can reach down to digits.These simulated results corresponds to the ZTM value in the experiment.
The ZnO/SRO multilayers were prepared by sputtering. According to our results, there is smaller grain size in thinner film. Thermal conductivity is affected by grain size. Therefore, we can control the thickness of film to optimize the ZTM of ZnO/SRO multilayers.In comparsion of ZnO/SRO multilayers produced in this work with ZnO published in the literature, the ZTM of former is 0.32 and it is three times higher than the latter. The AZO/SRO multilayers were also prepared by sputtering because we want to enhance electrical conductivity of ZnO/SRO multilayers .Moreover, the ZTM of AZO/SRO multilayers is up to 0.48.As the result of our research, the ZnO is possible to apply to the thermoelectric device.
[1] B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, et al., "Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites," Nano Lett, vol. 12, pp. 2077-82, Apr 11 2012.
[2] L. Han, N. V. Nong, L. T. Hung, T. Holgate, N. Pryds, M. Ohtaki, et al., "The influence of α- and γ-Al2O3 phases on the thermoelectric properties of Al-doped ZnO," Journal of Alloys and Compounds, vol. 555, pp. 291-296, 2013.
[3] P. Jood, R. J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R. W. Siegel, et al., "Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties," Nano Lett, vol. 11, pp. 4337-42, Oct 12 2011.
[4] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, pp. 12727-12731, 1993.
[5] C. H, Chen., H. S, Chiou., and S. H, Chu., "The simulation of thermoelectric conversion efficient and power output for thermoelectric generator module," Industrial Materials, vol. 334, p. 103, 2014.
[6] L. Weber and E. Gmelin, "Transport properties of silicon," Applied Physics A, vol. 53, pp. 136-140, 1991// 1991.
[7] "materialsnet," materialsnet.
[8] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nat Mater, vol. 7, pp. 105-114, 02//print 2008.
[9] S. V. Ovsyannikov and V. V. Shchennikov, "Thermomagnetic and thermoelectric properties of semiconductors (PbTe, PbSe) at ultrahigh pressures," Physica B: Condensed Matter, vol. 344, pp. 190-194, 2004.
[10] J. L. Cui, "Preparation and Electrical Properties of Ternary Compound (PbTe)<sub>1-x</sub>(SnTe)<sub>x</sub> with Nanocrystallines," Key Engineering Materials, vol. 280-283, pp. 389-392, 2005.
[11] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, et al., "Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy," Applied Physics Letters, vol. 93, p. 193121, 2008.
[12] "University of Glasgow."
[13] "Northwestern Materials Science and Engineering."
[14] G. Zhu, H. Lee, Y. Lan, X. Wang, G. Joshi, D. Wang, et al., "Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium," Physical Review Letters, vol. 102, 2009.
[15] S. Cecchi, T. Etzelstorfer, E. Müller, A. Samarelli, L. Ferre Llin, D. Chrastina, et al., "Ge/SiGe superlattices for thermoelectric energy conversion devices," Journal of Materials Science, vol. 48, pp. 2829-2835, 2012.
[16] S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, et al., "Nanostructured Bulk Silicon as an Effective Thermoelectric Material," Advanced Functional Materials, vol. 19, pp. 2445-2452, 2009.
[17] K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. McGaughey, and J. A. Malen, "Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance," Nat Commun, vol. 4, p. 1640, 2013.
[18] C. Jeong, S. Datta, and M. Lundstrom, "Thermal conductivity of bulk and thin-film silicon: A Landauer approach," Journal of Applied Physics, vol. 111, p. 093708, 2012.
[19] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, 3rd, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature, vol. 451, pp. 168-71, Jan 10 2008.
[20] J. Tang, H. T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, et al., "Holey silicon as an efficient thermoelectric material," Nano Lett, vol. 10, pp. 4279-83, Oct 13 2010.
[21] M. Nomura, Y. Kage, D. Müller, D. Moser, and O. Paul, "Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications," Applied Physics Letters, vol. 106, p. 223106, 2015.
[22] K. Valalaki, N. Vouroutzis, and A. G. Nassiopoulou, "Significant enhancement of the thermoelectric figure of merit of polycrystalline Si films by reducing grain size," Journal of Physics D: Applied Physics, vol. 49, p. 315104, 2016.
[23] R. Cheaito, J. C. Duda, T. E. Beechem, K. Hattar, J. F. Ihlefeld, D. L. Medlin, et al., "Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films," Phys Rev Lett, vol. 109, p. 195901, Nov 09 2012.
[24] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, pp. 597-602, 10/11/print 2001.
[25] Y. Nakamura, M. Isogawa, T. Ueda, S. Yamasaka, H. Matsui, J. Kikkawa, et al., "Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material," Nano Energy, vol. 12, pp. 845-851, 3// 2015.
[26] S. Budak, R. Parker, C. Smith, C. Muntele, K. Heidary, R. B. Johnson, et al., "Superlattice multinanolayered thin films of SiO2/SiO2 + Ge for thermoelectric device applications," Journal of Intelligent Material Systems and Structures, vol. 24, pp. 1357-1364, 2013.
[27] H. Wang, R. McCarty, J. R. Salvador, A. Yamamoto, and J. König, "Determination of Thermoelectric Module Efficiency: A Survey," Journal of Electronic Materials, vol. 43, pp. 2274-2286, 2014.
[28] G. Mie, "Zur kinetischen Theorie der einatomigen Körper," Annalen der Physik, vol. 316, pp. 657-697, 1903.
[29] J. Lennard-Jones and B. M. Dent, "Cohesion at a crystal surface," Transactions of the Faraday Society, vol. 24, pp. 92-108, 1928.
[30] P. M. Morse, "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels," Physical Review, vol. 34, pp. 57-64, 1929.
[31] M. Born and J. E. Mayer, "Zur Gittertheorie der Ionenkristalle," Zeitschrift für Physik, vol. 75, pp. 1-18, 1932.
[32] M. S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals," Physical Review B, vol. 29, pp. 6443-6453, 06/15/ 1984.
[33] M. Finnis and J. Sinclair, "A simple empirical N-body potential for transition metals," Philosophical Magazine A, vol. 50, pp. 45-55, 1984.
[34] J. Irving and R. W. Zwanzig, "The statistical mechanical theory of transport processes. V. Quantum hydrodynamics," The Journal of Chemical Physics, vol. 19, pp. 1173-1180, 1951.
[35] B. Alder and T. Wainwright, "Phase transition for a hard sphere system," The Journal of chemical physics, vol. 27, pp. 1208-1209, 1957.
[36] J. Gibson, A. N. Goland, M. Milgram, and G. Vineyard, "Dynamics of radiation damage," Physical Review, vol. 120, p. 1229, 1960.
[37] A. Rahman, "Correlations in the motion of atoms in liquid argon," Physical Review, vol. 136, p. A405, 1964.
[38] L. A. Girifalco and V. G. Weizer, "Application of the Morse potential function to cubic metals," Physical Review, vol. 114, p. 687, 1959.
[39] L. Verlet, "Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Physical review, vol. 159, p. 98, 1967.
[40] J.-c. Huang, "Study on Combination of Molecular Dynamics and Deformation Theory for Nano-scale Cutting," 2006.
[41] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, "Molecular dynamics with coupling to an external bath," The Journal of Chemical Physics, vol. 81, pp. 3684-3690, 1984.
[42] P. J. Lenart, A. Jusufi, and A. Z. Panagiotopoulos, "Effective potentials for 1: 1 electrolyte solutions incorporating dielectric saturation and repulsive hydration," The Journal of chemical physics, vol. 126, p. 044509, 2007.
[43] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of chemical physics, vol. 81, pp. 511-519, 1984.
[44] W. G. Hoover, "Canonical dynamics: equilibrium phase-space distributions," Physical review A, vol. 31, p. 1695, 1985.
[45] T. D. Nguyen, C. L. Phillips, J. A. Anderson, and S. C. Glotzer, "Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units," Computer Physics Communications, vol. 182, pp. 2307-2313, 2011.
[46] D. Bonthuis, K. Falk, C. Kaplan, D. Horinek, A. N. Berker, L. Bocquet, et al., "Comment on “Pumping of confined water in carbon nanotubes by rotation-translation coupling”," Physical review letters, vol. 105, p. 209401, 2010.
[47] P. K. Schelling, S. R. Phillpot, and P. Keblinski, "Comparison of atomic-level simulation methods for computing thermal conductivity," Physical Review B, vol. 65, 2002.
[48] A. Bagri, S. P. Kim, R. S. Ruoff, and V. B. Shenoy, "Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations," Nano Lett, vol. 11, pp. 3917-21, Sep 14 2011.
[49] X. Qu, W. Wang, S. Lv, and D. Jia, "Thermoelectric properties and electronic structure of Al-doped ZnO," Solid State Communications, vol. 151, pp. 332-336, 2011.
[50] J. Loureiro, N. Neves, R. Barros, T. Mateus, R. Santos, S. Filonovich, et al., "Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties," Journal of Materials Chemistry A, vol. 2, p. 6649, 2014.
[51] J.-H. Lee, T.-H. Park, S.-H. Lee, N.-W. Park, W.-Y. Lee, J.-H. Lim, et al., "Enhancing the thermoelectric properties of super-lattice Al2O3/ZnO atomic film via interface confinement," Ceramics International, vol. 42, pp. 14411-14415, 10// 2016.
[52] S. Wang, Z. Fan, R. S. Koster, C. Fang, M. A. van Huis, A. O. Yalcin, et al., "New Ab Initio Based Pair Potential for Accurate Simulation of Phase Transitions in ZnO," The Journal of Physical Chemistry C, vol. 118, pp. 11050-11061, 2014.
[53] D. Comedi, O. H. Y. Zalloum, E. A. Irving, J. Wojcik, T. Roschuk, M. J. Flynn, et al., "X-ray-diffraction study of crystalline Si nanocluster formation in annealed silicon-rich silicon oxides," Journal of Applied Physics, vol. 99, p. 023518, 2006.
[54] M. J. Akhtar, M. Ahamed, S. Kumar, M. M. Khan, J. Ahmad, and S. A. Alrokayan, "Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species," International journal of nanomedicine, vol. 7, p. 845, 2012.
[55] B.-Y. Su, S.-Y. Chu, Y.-D. Juang, M.-C. Lin, C.-C. Chang, and C.-J. Wu, "Efficiency enhancement of GaAs photovoltaics due to sol-gel derived anti-reflective AZO films," Journal of The Electrochemical Society, vol. 159, pp. H312-H316, 2012.