簡易檢索 / 詳目顯示

研究生: 王佑喬
Wang, Yu-Chiao
論文名稱: 非端對端與端對端深度學習模型與2D與3D臉部對齊技術在遠程心率估算中的比較分析
Comparative Analysis of Non-End-to-End and End-to-End Deep Learning Models with 2D and 3D Face Alignment for Remote Heart Rate Estimation
指導教授: 吳馬丁
Torbjörn, Nordling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 91
中文關鍵詞: 非接觸式心率量測遠程光體積描記法三維人臉對齊端到端模型長短程記憶模型
外文關鍵詞: non-contact heart rate measurement, remote photoplethysmography, 3D face alignment, end-to-end model, LSTM
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景:遠程光體積描記法(remote photoplethysmography, rPPG)用於心率估計是一個具潛力且快速發展的研究領域,現今最先進的方法多採用擴散模型、時空卷積神經網路(spatiotemporal CNN)以及基於 Transformer 的架構,以降低預測誤差。然而,該領域仍存在三項主要不足:(1) 非端到端系統過度依賴手工特徵,導致在不同場景下表現不穩定;(2) 二維人臉對齊方法在頭部運動時準確率下降;(3) 現有資料集過於簡單,無法反映真實世界。
    研究目的:本研究目標有二:(1) 比較非端到端與端到端深度學習模型在遠程心率估計中的效能差異;(2) 評估二維人臉對齊方法(MTCNN)與三維人臉對齊方法(PRNet)在提升遠程心率估計精度的效果。本研究旨在釐清人臉對齊方式與模型架構對遠程心率量測精度的影響。
    研究方法:我們使用兩個資料集:一個為專為 rPPG 研究設計的自建資料集,另一個為公開的 UBFC-RPPG 資料集。非端到端模型部分,我們使用十種傳統 rPPG 訊號擷取方法並搭配 LSTM 網路;端到端模型部分則採用 PhysFormer++,直接將原始臉部影片轉換為遠程心率預測。在人臉對齊方面,我們分別使用二維的 MTCNN 與三維的 PRNet。效能評估採用心率估計的均方根誤差,並涵蓋不同光照、運動及頭部運動等實驗條件。
    研究結果:結果顯示,端到端深度學習模型效能優於非端到端方法,在 UBFC 資料集上可降低約 0.33 bpm 的 RMSE。在較複雜的資料集中,LSTM 模型無法有效捕捉有意義的訊號模式,而 PhysFormer++ 仍具穩健表現。此外,當 PhysFormer++ 搭配三維人臉對齊(PRNet)時,其在動態頭部運動場景中的表現顯著優於二維對齊(MTCNN)。例如,在「旋轉」測試中,PRNet 相較 MTCNN 將心率估計 RMSE 降低 10.91 bpm;在騎車實驗中,PRNet 分別在等級 1、3、5 將 RMSE 降低 9.13 bpm、12.48 bpm 與 8.47 bpm。

    Introduction: Remote photoplethysmography (rPPG) for heart rate estimation is a promising and rapidly evolving field, with over 200 peer-reviewed papers now addressing the topic. State-of-the-art methods employ diffusion models, spatiotemporal CNNs, and transformer-based architectures to reduce prediction errors. Despite these advancements, three shortcomings remain: (1) Non-end-to-end systems rely heavily on handcrafted features, making them unreliable;(2) 2D face alignment methods degrade in accuracy under head movement; (3) Existing datasets are too simple and do not reflect real-world conditions.
    Objectives: The objective is twofold: (1) to compare the performance of non-end-to-end and end-to-end deep learning models in the context of remote HR estimation, and (2) to evaluate the effectiveness of 2D face alignment (MTCNN) versus 3D face alignment (PRNet) in improving remote HR accuracy. This comparison will provide insights into how face alignment methods and model architectures affect the precision of remote heart rate measurement.
    Methods: We utilized two distinct datasets: a custom dataset specifically designed for rPPG research and the publicly available UBFC-RPPG dataset. Ten non-end-to-end models relying on different traditional rppg-extraction methods followed by LSTM networks, were compared to the end-to-end PhysFormer++ model, which directly maps raw facial video data to remote heart rate predictions. For face alignment, we employed both 2D MTCNN and 3D PRNet. Performance was evaluated using Root Mean Square Error (RMSE) for remote heart rate estimation across various experimental conditions, including changes in lighting, motion artifacts, and head movements.
    Results: The results demonstrate that end-to-end deep learning models outperform non-end-to-end approaches, achieving an RMSE reduction of approximately 0.33 bpm on the UBFC dataset. On our more complex dataset, the LSTM model failed to capture meaningful patterns, whereas PhysFormer++ delivered robust performance. Furthermore, when combined with 3D face alignment within the PhysFormer++ pipeline, PRNet markedly surpasses 2D alignment via MTCNN under dynamic head movements. For instance, in the ``rotate'' test, PRNet reduced heart rate estimation RMSE by 10.91 bpm compared to MTCNN, and in the bike experiments at levels 1, 3, and 5, PRNet achieved RMSE reductions of 9.13 bpm, 12.48 bpm, and 8.47 bpm, respectively.

    Abstract i Table of Contents v List of Tables vii List of Figures viii 1 Introduction 1 1.1 rPPG Signal Extraction Methods 1 1.1.1 Traditional Methods 2 1.1.2 Machine Learning-Based Methods 2 1.1.3 Performance of rPPG models 9 1.2 Review of Face Detection and Alignment Methods 18 1.3 Motivations 18 1.4 Problem Statement and Objectives 19 1.5 Publications 20 2 Methods 23 2.1 Photoplethysmography and Remote Photoplethysmography Signal 23 2.2 Dataset 26 2.2.1 Our Dataset 26 2.2.2 UBFC-RPPG Dataset 33 2.3 Face Detection and Face Alignment 39 2.4 Non-End-to-End Model 41 2.4.1 Signal Preprocessing 43 2.4.2 Training Data Preparation 44 2.4.3 LSTM Model 44 2.5 End-to-End Model 46 2.5.1 Training Data Preparation 46 2.5.2 PhysFormer++ model 47 2.6 Heart-Rate Estimation 48 2.6.1 Frequency-Domain Analysis 48 2.6.2 pyVHR Toolbox 49 2.7 Evaluation Metrics 49 3 Results 51 3.1 Estimation of rPPG and HR 51 3.2 Results of Non-End-to-End LSTM Model 52 3.2.1 Comparison of Extraction Methods 52 3.2.2 Comparison of Different Combinations 53 3.2.3 Comparison of Different Sampling Windows 57 3.3 Results of End-to-End PhysFormer++ Model with Different Face Alignment Methods 58 3.3.1 MTCNN and PRNet Comparison 58 3.3.2 Intra-dataset Testing 61 4 Discussions 65 4.1 Non-End-to-End LSTM Model 65 4.2 End-to-End PhysFormer++ With Different Face Alignment Methods 66 4.3 End-to-End PhysFormer++ and Non-End-to-End LSTM Model Comparison 68 5 Conclusions and future work 69 5.1 Conclusion 69 5.2 Future Work 70 References 71

    Al-Naji, A. and Chahl, J. (2017). Contactless cardiac activity detection based on head motion magnification. International Journal of Image and Graphics, 17(01):1750001.
    Asthana, A., Zafeiriou, S., Cheng, S., and Pantic, M. (2013). Robust discriminative response map fitting with constrained local models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3444–3451. IEEE.
    Balakrishnan, G., Durand, F., and Guttag, J. (2013a). Detecting Pulse from Head Motions in Video. In 2013 IEEE Conference on Computer Vision and Pattern Recognition, pages 3430–3437. IEEE.
    Balakrishnan, G., Durand, F., and Guttag, J. (2013b). Detecting pulse from head motions in video. pages 3430 – 3437.
    Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., and Dubois, J. (2019). Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recognition Letters, 124:82–90.
    Boccignone, G., Conte, D., Cuculo, V., D’Amelio, A., Grossi, G., and Lanzarotti, R. (2020). An open framework for remote-PPG methods and their assessment. IEEE Access, pages 1–1.
    Boccignone, G., Conte, D., Cuculo, V., D’Amelio, A., Grossi, G., and Lanzarotti, R. (2025). Enhancing rppg pulse-signal recovery by facial sampling and psd clustering. Biomedical Signal Processing and Control, 101:107158.
    Boccignone, G., Conte, D., Cuculo, V., D’Amelio, A., Grossi, G., Lanzarotti, R., and Mortara, E. (2022). pyvhr: a python framework for remote photoplethysmography. PeerJ Computer Science, 8:e929.
    Böhm, M., Swedberg, K., Komajda, M., Borer, J. S., Ford, I., Dubost-Brama, A., Lerebours, G., Tavazzi, L., investigators, S., et al. (2010). Heart rate as a risk factor in chronic heart failure (shift): the association between heart rate and outcomes in a randomised placebocontrolled trial. The Lancet, 376(9744):886–894.
    Botina-Monsalve, D., Benezeth, Y., and Miteran, J. (2022). Rtrppg: An ultra light 3dcnn for real-time remote photoplethysmography. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2146–2154.
    Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools. Bulat, A. and Tzimiropoulos, G. (2017). How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks). In International Conference on Computer Vision.
    Castellano Ontiveros, R., Elgendi, M., and Menon, C. (2024). A machine learning-based approach for constructing remote photoplethysmogram signals from video cameras. Communications Medicine, 4(1).
    Chang, J. R. and Nordling, T. E. M. (2024). Skin feature point tracking using deep feature encodings. International Journal of Machine Learning and Cybernetics.
    Cheang, P. Y. and Smith, P. R. (2003). An overview of non-contact photoplethysmography. Electronic systems and control division research, pages 57–59.
    Chen, H., Zhang, X., Guo, Z., Ying, N., Yang, M., and Guo, C. (2024). Actnet: Attention based cnn and transformer network for respiratory rate estimation. Biomedical Signal Processing and Control, 96.
    Chen, S., Ho, S. K., Chin, J. W., Luo, K. H., Chan, T. T., So, R. H., and Wong, K. L. (2023). Deep learning-based image enhancement for robust remote photoplethysmography in various illumination scenarios. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6076–6084.
    Chen, W. and McDuff, D. (2018). Deepphys: Video-based physiological measurement using convolutional attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), pages 349–365.
    Davila, M. I., Lewis, G. F., and Porges, S. W. (2017). The physiocam: a novel non-contact sensor to measure heart rate variability in clinical and field applications. Frontiers in public health, 5:300.
    De Haan, G. and Jeanne, V. (2013). Robust pulse rate from chrominance-based rppg. IEEE Transactions on Biomedical Engineering, 60(10):2878–2886.
    De Haan, G. and Van Leest, A. (2014). Improved motion robustness of remote-ppg by using the blood volume pulse signature. Physiological measurement, 35(9):1913.
    De la Torre Frade, F., Chu, W.-S., Xiong, X., Carrasco, F. V., Ding, X., and Cohn, J. (2015). Intraface. In Automatic face and gesture recognition.
    Du, J., Liu, S.-Q., Zhang, B., and Yuen, P. C. (2023). Dual-bridging with adversarial noise generation for domain adaptive rppg estimation. volume 2023-June, pages 10355 – 10364.
    Feng, Y., Wu, F., Shao, X., Wang, Y., and Zhou, X. (2018). Joint 3d face reconstruction and dense alignment with position map regression network. In Proceedings of the European conference on computer vision (ECCV), pages 534–551.
    Gao, G., Liu, L., Wang, L., and Zhang, Y. (2019). Fashion clothes matching scheme based on siamese network and autoencoder. Multimed. Syst., 25(6):593–602.
    Gudi, A., Bittner, M., Lochmans, R., and van Gemert, J. (2019). Efficient real-time camera based estimation of heart rate and its variability. In Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 0–0.
    Guo, D., Tang, S., and Wang, M. (2019). Connectionist temporal modeling of video and language: A joint model for translation and sign labeling. volume 2019-August, page 751–757. Cited by: 38; All Open Access, Bronze Open Access.
    Guo, J., Zhu, X., Yang, Y., Yang, F., Lei, Z., and Li, S. Z. (2020). Towards fast, accurate and stable 3d dense face alignment. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK , August 23–28, 2020, Proceedings, Part XIX, pages 152–168. Springer.
    Haque, M. A., Irani, R., Nasrollahi, K., and Moeslund, T. B. (2016). Heartbeat Rate Measurement from Facial Video. IEEE Intelligent Systems, 31(3):40–48.
    He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.
    Hertzman, A. B. (1937). Photoelectric plethysmography of the fingers and toes in man. Proceedings of the Society for Experimental Biology and Medicine, 37(3):529–534.
    Hertzman, A. B. (1938). The blood supply of various skin areas as estimated by the photoelectric plethysmograph. American Journal of Physiology–Legacy Content, 124(2):328–340.
    Hsu, G.-S., Ambikapathi, A., and Chen, M.-S. (2017). Deep learning with time-frequency representation for pulse estimation from facial videos. volume 2018-January, page 383– 389.
    Hu, M., Gao, D., Wang, X., and Tang, Y. (2024). Video segment time-channel frequency attention network for remote photoplethysmography. page 1367–1371.
    Hu, M., Qian, F., Guo, D., Wang, X., He, L., and Ren, F. (2021). Eta-rppgnet: Effective time-domain attention network for remote heart rate measurement. IEEE Transactions on Instrumentation and Measurement, 70.
    Hu, M., Qian, F., Wang, X., He, L., Guo, D., and Ren, F. (2022). Robust heart rate estimation with spatial-temporal attention network from facial videos. IEEE Transactions on Cognitive and Developmental Systems, 14(2):639–647.
    Huang, B., Chang, C.-M., Lin, C.-L., Chen, W., Juang, C.-F., and Wu, X. (2020). Visual heart rate estimation from facial video based on cnn. page 1658–1662. Irani, R., Nasrollahi, K., and Moeslund, T. B. (2014). Improved pulse detection from head motions using dct. In 2014 international conference on computer vision theory and applications (VISAPP), volume 3, pages 118–124. IEEE.
    Kazemi, V. and Sullivan, J. (2014). One millisecond face alignment with an ensemble of regression trees. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 1867–1874.
    Knyaz, V. A., Vygolov, O., Kniaz, V. V., Vizilter, Y., Gorbatsevich, V., Luhmann, T., and Conen, N. (2017). Deep learning of convolutional auto-encoder for image matching and 3d object reconstruction in the infrared range. In Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 2155–2164.
    Kolosov, D., Kelefouras, V., Kourtessis, P., and Mporas, I. (2023). Contactless camera-based heart rate and respiratory rate monitoring using ai on hardware. Sensors, 23(9). All Open Access, Gold Open Access, Green Open Access.
    Kuang, H., Lv, F., Ma, X., and Liu, X. (2022). Efficient spatiotemporal attention network for remote heart rate variability analysis. Sensors, 22(3). All Open Access, Gold Open Access, Green Open Access.
    Kublanov, V. and Purtov, K. (2015). Researching the possibilities of remote photoplethysmography application to analysis of time-frequency changes of human heart rate variability. In 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON), pages 87–92. IEEE.
    Kwon, S., Kim, H., and Park, K. S. (2012). Validation of heart rate extraction using video imaging on a built-in camera system of a smartphone. pages 2174 – 2177. Cited by: 219.
    Lee, E., Chen, E., and Lee, C.-Y. (2020). Meta-rppg: Remote heart rate estimation using a transductive meta-learner. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12372 LNCS:392 – 409.
    Lee, H., Cho, A., Lee, S., and Whang, M. (2019). Vision-based measurement of heart rate from ballistocardiographic head movements using unsupervised clustering. Sensors, 19(15):3263.
    Lee, H., Lee, H., Hyun Lee, B., and Young Chun, S. (2025). Continual test-time adaptation for robust remote photoplethysmography estimation. IEEE Access, 13:55049–55060.
    Lee, S., Lee, M., and Sim, J. Y. (2023). Dse-nn: Deeply supervised efficient neural network for real-time remote photoplethysmography. Bioengineering, 10(12). All Open Access, Gold Open Access, Green Open Access.
    Lewandowska, M., Rumiński, J., Kocejko, T., and Nowak, J. (2011). Measuring pulse rate with a webcam—a non-contact method for evaluating cardiac activity. In 2011 federated conference on computer science and information systems (FedCSIS), pages 405–410. IEEE.
    Li, H., Lu, H., and Chen, Y.-C. (2025). Bi-tta: Bidirectional test-time adapter for remote physiological measurement. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 15069 LNCS:356–374.
    Li, K., Guo, D., and Wang, M. (2021). Proposal-free video grounding with contextual pyramid network. volume 3A, pages 1902 – 1910. All Open Access, Gold Open Access.
    Li, P., Benezeth, Y., Nakamura, K., Gomez, R., Li, C., and Yang, F. (2019). An improvement for video-based heart rate variability measurement. In 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), pages 435–439. IEEE.
    Li, Q., Guo, D., Qian, W., Tian, X., Sun, X., Zhao, H., and Wang, M. (2024). Channel-wise interactive learning for remote heart rate estimation from facial video. IEEE Transactions on Circuits and Systems for Video Technology, 34(6):4542–4555.
    Li, X., Chen, J., Zhao, G., and Pietikainen, M. (2014). Remote heart rate measurement from face videos under realistic situations. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4264–4271.
    Li, Z. and Yin, L. (2023). Contactless pulse estimation leveraging pseudo labels and self-supervision. page 20531–20540.
    Liu, J., Zhang, J., Tang, T., and Wu, S. (2025a). Dadnet: text detection of arbitrary shapes from drone perspective based on boundary adaptation. Complex and Intelligent Systems, 11(1). Cited by: 0.
    Liu, S.-Q. and Yuen, P. C. (2020). A general remote photoplethysmography estimator with spatiotemporal convolutional network. In 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pages 481–488. IEEE.
    Liu, T., Xiao, H., Sun, Y., Zuo, K., Li, Z., Yang, Z., and Liu, S. (2025b). Physkannet: A kan-based model for multiscale feature extraction and contextual fusion in remote physiological measurement. Biomedical Signal Processing and Control, 100.
    Liu, X., Fromm, J., Patel, S., and McDuff, D. (2020). Multi-task temporal shift attention networks for on-device contactless vitals measurement. Advances in Neural Information Processing Systems, 33:19400–19411.
    Liu, X., Hill, B., Jiang, Z., Patel, S., and McDuff, D. (2023). Efficientphys: Enabling simple, fast and accurate camera-based cardiac measurement. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 5008–5017.
    Lokendra, B. and Puneet, G. (2022). And-rppg: A novel denoising-rppg network for improving remote heart rate estimation. Computers in Biology and Medicine, 141:105146.
    Lu, H., Han, H., and Zhou, S. K. (2021). Dual-gan: Joint bvp and noise modeling for remote physiological measurement. pages 12399 – 12408.
    Matthes, K. and Hauss, W. (1938). Lichtelektrische plethysmogramme. Klinische Wochen-schrift, 17(35):1211–1213.
    Meher, J. (2024). Evaluating the impact of face alignment techniques on video-based non-contact heart rate measurement. Master’s thesis, National Cheng Kung University, No. 1,Dasyue Rd, East District, Tainan City, 701.
    Mironenko, Y., Kalinin, K., Kopeliovich, M., and Petrushan, M. (2020). Remote photoplethysmography: Rarely considered factors. volume 2020-June, page 1197 –1206. All Open Access, Green Open Access.
    Moço, A. V., Stuijk, S., and de Haan, G. (2018). New insights into the origin of remote ppg signals in visible light and infrared. Scientific reports, 8(1):8501.
    Mounsey, P. (1957). Praecordial ballistocardiography. British heart journal, 19(2):259.
    Nakajima, K., Maekawa, T., and Miike, H. (1997). Detection of apparent skin motion using optical flow analysis: Blood pulsation signal obtained from optical flow sequence. Review of scientific instruments, 68(2):1331–1336.
    Niu, X., Han, H., Shan, S., and Chen, X. (2018a). Synrhythm: Learning a deep heart rate estimator from general to specific. In 2018 24th International Conference on Pattern Recognition (ICPR), pages 3580–3585. IEEE.
    Niu, X., Han, H., Shan, S., and Chen, X. (2018b). Vipl-hr: A multi-modal database for pulse estimation from less-constrained face video. In Asian Conference on Computer Vision, pages 562–576. Springer.
    Niu, X., Shan, S., Han, H., and Chen, X. (2019a). Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation. IEEE Transactions on Image Processing.
    Niu, X., Yu, Z., Han, H., Li, X., Shan, S., and Zhao, G. (2020a). Video-based remote physiological measurement via cross-verified feature disentangling. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK , August 23–28, 2020, Proceedings, Part II 16, pages 295–310. Springer.
    Niu, X., Yu, Z., Han, H., Li, X., Shan, S., and Zhao, G. (2020b). Video-based remote physiological measurement via cross-verified feature disentangling. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12347 LNCS:295–310.
    Niu, X., Zhao, X., Han, H., Das, A., Dantcheva, A., Shan, S., and Chen, X. (2019b). Robust remote heart rate estimation from face utilizing spatial-temporal attention. All Open Access, Green Open Access.
    Perepelkina, O., Artemyev, M., Churikova, M., and Grinenko, M. (2020). Hearttrack: Convolutional neural network for remote video-based heart rate monitoring. volume 2020 June, page 1163–1171.
    Pilz, C. S., Blazek, V., and Leonhardt, S. (2019). On the vector space in photoplethysmography imaging. arXiv preprint arXiv:1906.04431.
    Pilz, C. S., Krajewski, J., and Blazek, V. (2017). On the diffusion process for heart rate estimation from face videos under realistic conditions. In German Conference on Pattern Recognition, pages 361–373. Springer.
    Pilz, C. S., Zaunseder, S., Krajewski, J., and Blazek, V. (2018). Local group invariance for heart rate estimation from face videos in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1254–1262.
    Poh, M.-Z., Kim, K., Goessling, A., Swenson, N., and Picard, R. (2010a). Cardiovascular monitoring using earphones and a mobile device. IEEE Pervasive Computing, 11(4):18–26.
    Poh, M.-Z., McDuff, D. J., and Picard, R. W. (2010b). Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express, 18(10):10762–10774. All Open Access, Gold Open Access.
    Poh, M.-Z., McDuff, D. J., and Picard, R. W. (2011). Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Transactions on Biomedical Engineering, 58(1):7–11. All Open Access, Green Open Access.
    Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G., Coats, A. J., Falk, V., González-Juanatey, J. R., Harjola, V.-P., Jankowska, E. A., et al. (2016). 2016 esc guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (esc). developed with the special contribution of the heart failure association (hfa) of the esc. European journal of heart failure, 18(8):891–975.
    Qi, H., Guo, Z., Chen, X., Shen, Z., and Wang, Z. J. (2017). Video-based human heart rate measurement using joint blind source separation. Biomedical Signal Processing and Control, 31:309–320.
    Qia, N., Li, K., Guo, D., Hu, B., and Wang, M. (2024). Cluster-phys: Facial clues clustering towards efficient remote physiological measurement. page 330–339.
    Qiu, Y., Liu, Y., Arteaga-Falconi, J., Dong, H., and Saddik, A. E. (2019). Evm-cnn: Realtime contactless heart rate estimation from facial video. IEEE Transactions on Multimedia, 21(7):1778–1787. All Open Access, Green Open Access.
    Saragih, J. M., Lucey, S., and Cohn, J. F. (2011). Deformable model fitting by regularized landmark mean-shift. International journal of computer vision, 91:200–215.
    Shan, L. and Yu, M. (2013). Video-based heart rate measurement using head motion tracking and ica. In 2013 6th International Congress on Image and Signal Processing (CISP), volume 1, pages 160–164. IEEE.
    Shelley, K., Shelley, S., and Lake, C. (2001). Pulse oximeter waveform: photoelectric plethysmography. Clinical monitoring, 2.
    Soleymani, M., Lichtenauer, J., Pun, T., and Pantic, M. (2012). A multimodal database for affect recognition and implicit tagging. IEEE Transactions on Affective Computing, 3(1):42–55.
    Song, R., Chen, H., Cheng, J., Li, C., Liu, Y., and Chen, X. (2021). Pulsegan: Learning to generate realistic pulse waveforms in remote photoplethysmography. IEEE Journal of Biomedical and Health Informatics, 25(5):1373–1384.
    Song, R., Zhang, S., Li, C., Zhang, Y., Cheng, J., and Chen, X. (2020). Heart rate estimation from facial videos using a spatiotemporal representation with convolutional neural networks. IEEE Transactions on Instrumentation and Measurement.
    Speth, J., Vance, N., Flynn, P., and Czajka, A. (2023). Non-contrastive unsupervised learning of physiological signals from video. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 14464–14474.
    Špetlík, R., Franc, V., and Matas, J. (2018). Visual heart rate estimation with convolutional neural network. In Proceedings of the British Machine Vision Conference, Newcastle, UK, pages 3–6.
    Stricker, R., Müller, S., and Gross, H.-M. (2014). Non-contact video-based pulse rate measurement on a mobile service robot. In Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages 1056–1062, Edinburgh, Scotland, UK. IEEE. PURE dataset.
    Sun, Y. and Thakor, N. (2016). Photoplethysmography revisited: from contact to noncontact, from point to imaging. IEEE Transactions on Biomedical Engineering, 63(3):463–477.
    Sun, Z. and Li, X. (2022). Contrast-phys: Unsupervised video-based remote physiological measurement via spatiotemporal contrast. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13672 LNCS:492–510.
    Sweely, B., Liu, Z., Wyatt, T., Newnam, K., Qi, H., and Zhao, X. (2021). Camera-based remote photoplethysmography for physiological monitoring in neonatal intensive care. In 2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pages 146–149.
    Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1701–1708.
    Tsou, Y.-Y., Lee, Y.-A., and Hsu, C.-T. (2020a). Multi-task learning for simultaneous video generation and remote photoplethysmography estimation. In Proceedings of the Asian Conference on Computer Vision.
    Tsou, Y.-Y., Lee, Y.-A., Hsu, C.-T., and Chang, S.-H. (2020b). Siamese-rppg network: remote photoplethysmography signal estimation from face videos. In Proceedings of the 35th Annual ACM Symposium on Applied Computing, pages 2066–2073.
    Tu, X., Liu, Y., Zhao, M., Liu, B., Liu, J., Lei, X., Xu, L., Zhu, X., Wang, Y., and Huang, Y. (2024). Standardized rppg signal generation based on generative adversarial networks. Journal of Electronic Imaging, 33(1).
    Tulyakov, S., Alameda-Pineda, X., Ricci, E., Yin, L., Cohn, J. F., and Sebe, N. (2016). Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2396–2404.
    van Gastel, M., Stuijk, S., and de Haan, G. (2016). Robust respiration detection from remote photoplethysmography. Biomedical optics express, 7(12):4941–4957.
    Verkruysse, W., Svaasand, L. O., and Nelson, J. S. (2008a). Remote plethysmographic imaging using ambient light. Optics express, 16(26):21434–21445.
    Viola, P. and Jones, M. J. (2004). Robust real-time face detection. International journal of computer vision, 57:137–154.
    Wang, C.-C. (2020). Non-contact heart rate measurement based on facial videos. Master’s thesis, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan City, 701.
    Wang, W., Den Brinker, A. C., and De Haan, G. (2018). Single element remote-ppg. IEEE Transactions on Biomedical Engineering.
    Wang, W., Den Brinker, A. C., and De Haan, G. (2019a). Discriminative signatures for remote-ppg. IEEE Transactions on Biomedical Engineering.
    Wang, W., Den Brinker, A. C., Stuijk, S., and De Haan, G. (2016). Algorithmic principles of remote ppg. IEEE Transactions on Biomedical Engineering, 64(7):1479–1491.
    Wang, W., Stuijk, S., and De Haan, G. (2015a). Exploiting spatial redundancy of image sensor for motion robust rPPG . IEEE Transactions on Biomedical Engineering, 62(2):415–425.
    Wang, W., Stuijk, S., and De Haan, G. (2015b). A novel algorithm for remote photoplethysmography: Spatial subspace rotation. IEEE transactions on biomedical engineering, 63(9):1974–1984.
    Wang, Z.-K., Kao, Y., and Hsu, C.-T. (2019b). Vision-based heart rate estimation via a two-stream cnn. In 2019 IEEE International Conference on Image Processing (ICIP), pages 3327–3331. IEEE.
    Wieringa, F. P., Mastik, F., and van der Steen, A. F. (2005). Contactless multiple wavelength photoplethysmographic imaging: a first step toward “spo 2 camera"technology. Annals of biomedical engineering, 33(8):1034–1041.
    Wu, B.-F., Chu, Y.-W., Huang, P.-W., and Chung, M.-L. (2019a). Neural network based luminance variation resistant remote-photoplethysmography for driver's heart rate monitoring. IEEE Access, 7:57210–57225.
    Wu, B.-F., Huang, P.-W., He, D.-H., Lin, C.-H., and Chen, K.-H. (2019b). Remote photoplethysmography enhancement with machine leaning methods. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pages 2466–2471. IEEE.
    Wu, B.-F., Huang, P.-W., Lin, C.-H., Chung, M.-L., Tsou, T.-Y., and Wu, Y.-L. (2018). Motion resistant image-photoplethysmography based on spectral peak tracking algorithm. IEEE Access, 6:21621–21634.
    Wu, B.-F., Yang, Y.-Y., Tsai, B.-R., Huang, P.-W., Tsai, Y.-C., and Chen, K.-H. (2019c). Remote heartrate measurement based on signal feature detection in time domain. In 2019 International Conference on System Science and Engineering (ICSSE), pages 88–93. IEEE.
    Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., and Freeman, W. (2012). Eulerian video magnification for revealing subtle changes in the world. ACM transactions on graphics (TOG), 31(4):1–8.
    Xiang, J. and Zhu, G. (2017). Joint face detection and facial expression recognition with mtcnn. In 2017 4th international conference on information science and control engineering (ICISCE), pages 424–427. IEEE.
    Xiao, H., Li, Z., Xia, Z., Liu, T., Zhou, F., and Avolio, A. (2024). Simfupulse: A self-similarity supervised model for remote photoplethysmography extraction from facial videos. Biomedical Signal Processing and Control, 98.
    Xiong, J., Ou, W., Yao, Y., Liu, Y., Gao, Z., Liu, Z., and Gou, J. (2024). Stgnet: Spatiotemporal graph neural networks considering inherent properties of physiological signals for camera-based remote photoplethysmography. Biomedical Signal Processing and Control, 98.
    Xiong, X. and De la Torre, F. (2013). Supervised descent method and its applications to face alignment. IEEE transactions on pattern analysis and machine intelligence, 35(8):1888–1902.
    Yang, Z., Wang, H., Liu, B., and Lu, F. (2024). Cbppggan: A generic enhancement framework for unpaired pulse waveforms in camera-based photoplethysmography. IEEE Journal of Biomedical and Health Informatics, 28(2):598–608.
    Yu, Z., Li, X., Niu, X., Shi, J., and Zhao, G. (2020a). Autohr: A strong end-to-end baseline for remote heart rate measurement with neural searching. IEEE Signal Processing Letters, 27:1245–1249.
    Yu, Z., Li, X., and Zhao, G. (2019a). Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks. In Proc. BMVC.
    Yu, Z., Li, X., and Zhao, G. (2020b). Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks.
    Yu, Z., Peng, W., Li, X., Hong, X., and Zhao, G. (2019b). Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement. In Proceedings of the IEEE International Conference on Computer Vision, pages 151–160.
    Yu, Z., Shen, Y., Shi, J., Zhao, H., Cui, Y., Zhang, J., Torr, P., and Zhao, G. (2023). Physformer++: Facial video-based physiological measurement with slowfast temporal difference transformer. International Journal of Computer Vision, 131(6):1307 –1330. All Open Access, Hybrid Gold Open Access.
    Yu, Z., Shen, Y., Shi, J., Zhao, H., Torr, P. H., and Zhao, G. (2022). Physformer: facial video-based physiological measurement with temporal difference transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4186–4196.
    Zhang, G., Shan, C., Kirenko, I., Long, X., and Aarts, R. M. (2017). Hybrid optical unobtrusive blood pressure measurements. Sensors, 17(7):1541.
    Zhao, K., Chu, W.-S., De la Torre, F., Cohn, J. F., and Zhang, H. (2015). Joint patch and multi-label learning for facial action unit detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2207–2216.
    Zheng, J., Hu, S., Chouliaras, V., and Summers, R. (2008). Feasibility of imaging photoplethysmography. In 2008 International Conference on BioMedical Engineering and Informatics, volume 2, pages 72–75. IEEE.
    Zhou, K., Krause, S., Blocher, T., and Stork, W. (2020). Enhancing remote-ppg pulse extraction in disturbance scenarios utilizing spectral characteristics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 280–281.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE