| 研究生: |
廖士鈞 Liao, Shih-Jyun |
|---|---|
| 論文名稱: |
具動作辨識之能量消耗估測演算法之開發 Development of Energy Expenditure Estimation Algorithm Based on Activity Classification |
| 指導教授: |
王振興
Wang, Jeen-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 加速度計 、動作辨識 、能量消耗 |
| 外文關鍵詞: | accelerometer, activity classification, energy expenditure |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在以加速度感測模組實現一結合動作辨識之能量消耗估測演算法,利用配戴於慣用手手腕及慣用腳腳踝的加速度感測模組,收集並儲存日常活動所產生之加速度訊號。首先建構一動作辨識演算法用以辨識站姿動作、坐姿動作、走路、跑步、騎腳踏車、上樓梯及下樓梯七種動作,再依照各活動類別分別建立各動作之能量消耗估測模型,最後再針對非穩態能量消耗進行估測,以完成一結合動作辨識之能量消耗估測演算法,提供使用者動作種類及能量消耗資訊。
加速度訊號經由加速度感測模組量測後,經由靜態、動態與震動分析將可區分靜態訊號、動態訊號與非人為產生的震動訊號。靜態訊號由姿態辨識演算法辨識站姿動作及坐姿動作;動態訊號由活動辨識演算法分為走路、跑步、騎腳踏車、上樓梯及下樓梯五種動作。接著使用加速度訊號的所產生的各項參數及由氣體分析儀所量測之實際能量消耗值來建構每一活動類別之能量消耗估測模型,最後利用一非穩態能量消耗估測方程式進行非穩態能量消耗的估測。
本論文結合動作辨識與能量消耗估測模型完成一適用於廣泛活動強度之能量消耗估測演算法。由實驗結果得知,動作辨識演算法對於11種日常活動之平均辨識率可達到96.8%;而結合動作辨識之能量消耗估測的平均估計標準誤差為0.726 METs,相較於未結合動作辨識之估計標準誤差0.969 METs,估測準確度之改善率為23.01%。另外,加入了非穩態能量消耗估測後對於連續時間之能量消耗估測的平均估計標準誤差為1.13METs,而未加入非穩態能量消耗估測的平均估計標準誤差為0.72METs,估測準確度之改善率為36.52%。
This thesis presents an algorithm for energy expenditure (EE) estimation of physical activities with activity classification for a wide range of daily activities using wearable physical activity sensor modules. The modules are worn on subject's dominant wrist and ankle to collect the accelerations of daily physical activity. The activity classification algorithm uses accelerations to classify seven activity categories including sitting, standing, walking, running, bicycling, walking upstairs, and walking downstairs. The oxygen uptake measured by the Cosmed K4b2 for each activity is used to construct EE mapping regression model. Finally, the proposed nonsteady state EE estimation method is constructed to compensate the results of the EE estimation algorithm.
Accelerations collected by the modules from activities are separated into three types: static, dynamic, and vibration. The static type can be divided into sitting and standing by using a posture recognition algorithm. Then, a k-nearest neighbor (k-NN) algorithm is used to classify the dynamic type including walking, running, bicycling, walking upstairs, and walking downstairs. After activity classification, oxygen uptake measured by the Cosmed K4b2 and features generated by accelerations are used to develop a linear regression model for each activity to estimate EE. A nonsteady state EE estimation equation is then used to estimate nonsteady state EE to improve the accuracy of long-term EE estimation.
In our experiments, the effectiveness of the proposed activity classification algorithm, EE mapping regression model, and nonsteady EE estimation algorithm has been successfully validated. The classification rate of 11 daily activities using the proposed activity classification algorithm is 96.8%. The averaged standard error of estimation (SEE) of EE estimation with activity classification is 0.726 METs, and the SEE of EE estimation without activity classification is 0.969 METs, which is higher than the SEE with activity classification. The performance of improvement of EE estimation with activity classification is 23.01%. The averaged SEE of EE estimation for a long-term acceleration data with nonsteady EE estimation is 0.72 METs, and the averaged SEE of EE estimation without nonsteady EE estimation is 1.31 METs. The performance of improvement of nonsteady EE estimation is 36.52%.
[1]I. M. Lee, H. D. Sesso, and R. S. Paffenbarger Jr, 「Physical activity and coronary heart disease risk in men does the duration of exercise episodes predict risk,」 Circulation, vol. 102, no. 9, pp. 981-986, 2000.
[2]B. A. Calton, R. Z. Stolzenberg-Solomon, S. C. Moore, A. Schatzkin, C. Schairer, D. Albanes, and M. F. Leitzmann, 「A prospective study of physical activity and the risk of pancreatic cancer among women (United States),」 BioMed Central Cancer, vol. 8, no. 1, pp. 1-9, 2008.
[3]R. R. Pate, M. Pratt, S. N. Blair, W. L. Haskell, C. A. Macera, C. Bouchard, D. Buchner, W. Ettinger, G. W. Heath, A. C. King, et al., 「Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine.」 JAMA, vol. 273, no. 5, pp. 402-408, 1995.
[4]WHO. World Health Report 2002: reducing risks, promoting healthy life. Geneva: World Health Organization, 2002.
[5]葉志嶸、張新儀、潘文涵。台灣近十二年之肥胖與代謝症候群之變遷趨勢:由NAHSIT 1993-1996到2005-2008,台灣營養健康調查:141-154。
[6]M. P. Rothney, E. V. Schaefer, M. M. Neumann, L. Choi, and K. Y. Chen, 「Validity of physical activity intensity predictions by Actigraph, Actical, and RT3 accelerometers,」 Obesity Society, vol. 16, no. 8, pp. 1946-1952, 2008.
[7]S. E. Crouter, J. R. Churilla, and D. R. Bassett Jr, 「Estimating energy expenditure using accelerometers,」 Eur. Journal of Applied Physiology, vol. 98, no. 6, pp. 601-612, 2006.
[8]S. M. Slootmaker, M. J. M. C. A Paw, A. J. Schuit, W. Van. Mechelen, and L. L. J. Koppes, 「Concurrent validity of the PAM accelerometer relative to the MTI Actigraph using oxygen consumption as a reference,」 Medicine & Science in Sports & Exercise, vol. 19, no. 1, pp. 36-43, 2007.
[9]K. L. Campbell, P. R. E. Crocker, and D. C. Mckenzie, 「Field evaluation of energy expenditure in women using tritrac accelerometers,」 Medicine & Science in Sports & Exercise, vol. 34, no. 10, pp. 1667-1674, 2002.
[10]M. R. Puyau, A. L. Adolph, F. A. Vohra, I. Zakeri, and N. F. Butte. 「Prediction of Activity Energy Expenditure Using Accelerometers in Children,」 Medicine & Science in Sports & Exercise, vol. 36, no. 9, pp. 1625-1631, 2004
[11]E. Jequire and Y. Schutz, 「Long-term measurements of energy expenditure in humans using a respiration chamber,」 The American Journal Clinical Nutrition, vol. 38, pp. 989-998, 1983.
[12]G. Plasqui, A. M. C. P. Joosen, A. D. Kester, A. H. C. Goris, and K. R. Westerterp, 「Measuring free-living energy expenditure and physical activity with triaxial accelerometer,」 Obesity Research, vol. 13, no. 8, pp. 1363-1369, 2005.
[13]S. Schulz, K. R. Westerterp, and K. Brück, 「Comparison of energy expenditure by the double labeled water technique with energy intake, heart rate, and activity recording in man,」 American Society for Clinical Nutrition, vol. 49, no. 6, pp. 1146-1154, 1989.
[14]S. J. Strath, D. R. Basseett, A. M. Swartz, and D. L. Thompson, 「Simultaneous heart rate-motion sensor technique to estimate energy expenditure,」 Medicine & Science in Sports & Exercise, vol. 33, no. 12, pp. 2118-2123, 2001.
[15]A. G. Brooks, S. M. Gunn, R. T. Withers, C. J. Gore, and J. L. Plummer, 「Predicting walking METs and energy expenditure from speed or accelerometry,」 Medicine & Science in Sports & Exercise, vol. 37, no. 7, pp. 1216-1223, 2005.
[16]K. Y. Chen and D. R. Bassett, 「The technology of accelerometry-based activity monitors: current and future,」 Medicine & Science in Sports & Exercise, vol. 37, no. 11, pp. S490-S500, 2005.
[17]E. M. Tapia, 「Using Machine Learning for Real-time Activity Recognition and Estimation of Energy Expenditure,」 Ph.D. dissertation, Massachusetts Institute of Technology, 2008.
[18]M. P. Rothney, M. Neumann, and A. Béziat, 「An artificial neural network model of energy expenditure using nonintegrated acceleration signals,」 Eur. Journal of Applied Physiology, vol. 103, no. 4, pp. 1419-1427, 2007.
[19]J. Staudenmayer, D. Pober, S. Crouter, D. Bassett, and P. Freedson,」 An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer,」 J. Appl. Physiol, vol. 107, pp. 1300-1307, 2009.
[20]A. M. Swartz, S. J. Strath, D. R. Bassett, W. L. O'brien, G. A. King, and B. E. Ainsworth, 「Estimation of energy expenditure using CSA accelerometers at hip and wrist sites,」 Medicine & Science in Sports & Exercise, vol. 32, no. 9, pp. S450-S456, 2000.
[21]B. Weber, I. Hermanns, R. Ellegast, and J. Kleinert, 「A person-centered measurement system for quantification of physical activity and energy expenditure at workplaces,」 Ergonomics and Health Aspects, vol. 5624, pp. 121-130, 2009.
[22]H. Kumahara, Y. Schutz, M. Ayabe, M. Yoshioka, Y. Yoshitake, M. Shindo, K. Ishii, and H. Tanaka, 「The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry,」 British Journal of Nutrition, vol. 91, pp. 235-243, 2004.
[23]S. A. S. Gropper, J. L. Smith, and J. L. Groff, Advanced nutrition and human metabolism. United States of America, Peter Marshall, 2005.
[24]R. S. Rawson and T. M. Walsh, 「Estimation of resistance exercise energy expenditure using accelerometry,」 Medicine & Science in Sports & Exercise, vol. 42, no. 3, pp. 622-628, 2010.
[25]C. A. Dorminy, L. Choi, S. A. Akohoue, K. Y. Chen, and M. S. Buchowski, 「Validity of a multisensor armband in estimating 24h energy expenditure in children,」 Medicine & Science in Sports & Exercise, vol. 40, no. 4, pp. 699-706, 2008.
[26]D. R. Bouchard and F. Trudeau, 「Estimation of energy expenditure in a work environment: Comparison of accelerometry and oxygen consumption/heart rate regression,」 Ergonomics, vol. 51, no. 5, pp. 663-670, 2008.
[27]G. J. Welk, S. N. Blair, K. Wood, S. Jones, and R. W. Thompson, 「A comparative evaluation of three accelerometry-based physical activity monitors,」 Medicine & Science in Sports & Exercise, vol. 32, no. 9, pp. S489-S497, 2000.
[28]D. M. Pober, J. Staudenmayer, C. Raphael, and P. S. Freedson, 「Development of novel techniques to classify physical activity mode using accelerometers,」 Medicine & Science in Sports & Exercise, vol. 38, no. 9, pp. 1626-1634, 2006.
[29]S. E. Crouter, K. G. Clowers, and D. R. Bassett Jr., 「A novel method for using accelerometer data to predict energy expenditure,」 J. Appl. Physiol, vol. 100, pp. 1324-1331, 2006.
[30]C. V. C. Bouten, K. T. M. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, 「A triaxial accelerometer and portable data processing unit for assessment the assessment of daily physical activity,」 IEEE Trans. Biomedical Engineering, vol. 44, no. 3, pp. 136-147, 1997.
[31]S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, D. Howard, K. Meijer, and R. Crompton, 「Activity identification using body-mounted sensors-a review of classification techniques,」 Physiological Measurement, vol. 30, no. 4, pp. R1-R33, 2009.
[32]P. Barralon, N.Noury, and N. Vuillerme, 「Classification of daily physical activities from a single kinematic sensor,」 in Proceedings of the 2005 IEEE 27th Annual Conference on Engineering in Medicine and Biology, 2005, pp. 2447-2450.
[33]J. B. Kuipers, Quaternions and rotation sequences. United States of America, Princeton University Press, 1999.
[34]S. Godha and G. Lachapelle, 「Foot mounted inertial system for pedestrian navigation,」 Measurement Science and Technology, vol. 19, no. 7, pp. 1-9, 2008.
[35]Y. Dodge, The Oxford dictionary of statistical terms. United Kingdom, Oxford University Press, 2003.
[36]G. Upton, I. Cook, Understanding statistics. United Kingdom, Oxford University Press, 1996.
[37]Walker, Helen. Studies in the history of the statistical method. Baltimore, MD: Williams & Wilkins Co, 1931.
[38]Prugovec̆ki, Eduard, Quantum mechanics in Hilbert space. Academic Press, 1981.
[39]R. A. Groeneveld and G. Meeden, 「Measuring Skewness and Kurtosis」, The Statistician, vol. 33, pp. 391-399, 1984.
[40]H. Rob and F. Yan, 「Sample quantiles in statistical packages」, American Statistician, vol. 50, no. 4, pp. 361-365, 1996.
[41]C. W. Allen, Astrophysical Quantities, Athlone Press, 1973.
[42]K. D. Bailey, Social Entropy Theory, State University of New York Press, 1990.
[43]行政院衛生署,每日營養素建議攝取量及其說明,民國82年。
[44]E. K. P. Chong and S. H. An introduction to optimization. Hoboken, NJ: John Wiley and Sons, 2008.
[45]S. Koga, T. Shiojiri, Y. Fukuba, Y. Fukuoka, and N. Kondo, 「Pulmonary oxygen uptake kinetics in nonsteady state,」 Journal of Physiological Anthropology, vol. 15, no. 1, pp. 1-4, 1996.
[46]陳順宇、鄭碧娥,統計學,華泰書局,民國九十三年三月。