簡易檢索 / 詳目顯示

研究生: 王選涵
Wang, Hsuan-Han
論文名稱: 適用於具有未知干擾之最小相位連續時間系統的強健比例積分追蹤器
A Robust PI Tracker for Minimum Phase Continuous-time Systems with Unknown Disturbance
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 61
中文關鍵詞: 線性二次類比追蹤器頻率塑型線性函數估測器干擾估測器PID 濾波器PI追蹤器
外文關鍵詞: Optimal linear quadratic analog tracker, linear functional observer, disturbance estimator, PID filter, control zeros, PI tracker
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由以比例積分微分濾波器為基底之頻率塑型的方法,提出一種用於具有未知輸入和輸出干擾的連續時間系統之廣義最佳線性二次類比追蹤器。論文主要包括一、適用於非方陣極小相位連續時間系統的最佳追蹤器設計以及補償系統已知擾動的方法,二、探討系統同時具有輸入和輸出干擾時的等效輸入干擾以及等效輸入干擾與輸出干擾之間的關係,三、採用線性函數觀測器設計的改良擾動估測方法。同時將以一些說明性的例題來驗證本論文所提出之追蹤器以及應用的有效性。

    This thesis presents a PID filter-based generalized optimal linear quadratic analog tracker (LQAT) with unknown input and output disturbance for the continuous-time systems. This includes (i) An optimal PI tracker design for non-square minimum phase continuous-time systems with known disturbances and direct-feedthrough term. (ii) Estimation of the Equivalent input disturbance (EID) of the system with unknown input and the output disturbance and the relationship between EID and output disturbance. (iii) The linear functional observer-based input disturbance estimation method.

    Contents 摘要 I Abstract II Acknowledgement III Contents IV List of Figures VI Chapter 1. Introduction 1 Chapter 2. An Optimal LQAT for the System with Known Disturbances and Feedthrough Term 3 2.1 Introduction on the optimal linear quadratic analog tracker for the system with known system disturbances 4 2.2 An optimal PI state-feedback linear quadratic tracker for non-square non-minimum phase systems: PID filter-based frequency shaping approach 5 Chapter 3. Improved Optimal LQAT for Minimum Phase Systems with Unknown Disturbances 10 3.1 Problem statement and assumptions 11 3.2 Equivalent input disturbance (EID) of the system with input-output unknown disturbance 12 3.3 The relationship between equivalent input disturbance (EID) and output disturbance 13 3.4 The state-space structure of the disturbance estimator, filter, and observer 14 3.5 The closed-loop stability analysis of the system 15 3.6 The design of observer, filter, and disturbance estimator 16 Chapter 4. Linear Functional Observer 20 4.1 Introduction on the scalar functional observers 21 4.2 Problem statement 22 4.3 Existence conditions 23 4.4 Design algorithm for multiple functions with order r 25 4.5 Design procedure for PI tracker and multi-functional observer with order r 28 4.6 Illustrative examples 33 Chapter 5. Conclusion 59 References 60

    [1] Anderson, B.D.O. and Moore, J.B. (1989). Optimal Control: Linear Quadratic Methods. Prentice-Hall, New Jersey.
    [2] Anderson, B.D.O. and Moore, J.B. (1971). Linear Optimal Control. Englewood Cliffs: Prentice-Hal.
    [3] Benallouch, M., Outbib, R., Boutayeb, M., and Laroche, E. (2009). A new scheme on robust unknown input nonlinear observer for PEM fuel cell stack system. 18th IEEE International Conference on Control Applications, Saint Petersburg, Russia, 613–618.
    [4] Chang, J. L. (2006). Applying discrete-time proportional integral observers for state and disturbance estimations. IEEE Transactions on Automatic Control, 51(5), 814-8186.
    [5] Chen, M. S. and Chen, C. C. (2010). Unknown input observer for linear non-minimum phase systems. Journal of The Franklin Institute, 347, 577-588.
    [6] Ebrahimzadeh, F., Tsai, J.S.H., Chung, M.C., Liao, Y.T., Guo, S.M., Shieh, L.S., and Wang, L. (2017). A generalized optimal linear quadratic tracker with universal applications-Part 2: Discrete-time systems. International Journal of Systems Science, 48(2), 397-416.
    [7] Ebrahimzadeh, F., Tsai, J.S.H., Liao, Y.T., Chung, M.C., Guo, S.M., Shieh, L.S., and Wang, L. (2017). A generalized optimal linear quadratic tracker with universal applications-Part 1: Continuous-time systems. International Journal of Systems Science, 48(2), 376-396.
    [8] Fernando, T., and Trinh, H. (2007). Design of reduced-order state/unknown input observers based on a descriptor system approach. Asian Journal of Control, 9, 458–465.
    [9] Hieu, T. and Tyrone, F. (2011). Functional Observers for Dynamical Systems. Berlin: Springer.
    [10] Hunt, L. R., Mayer, G., and Su, R. (1996). Noncausal inverses for linear systems. IEEE Transactions on Automatic Control, 41(4), 608-611.
    [11] Luenberger, D. (1971). An introduction to observers. IEEE Transactions on Automatic Control, 16, 596–602.
    [12] Radke, A. and Gao, Z. (2006). A survey of state and disturbance observers for practitioners. Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, June 14-26, 2006.
    [13] Rao, C. and Mitra, S. (1971). Generalized Inverse of Matrices and Its Applications.
    NY: John Wiley and Sons.
    [14] She, J. H., Fang, M., Ohyama, Y., Hashimoto, H., and Wu, M. (2008). Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Transactions on Industrial Electronics, 55(1), 380-389.
    [15] Shieh, L. S., Dib, H. M., and Ganesan, S. (1987). Continuous-time quadratic regulators and pseudo-continuous-time quadratic regulators with pole placement in a specific region. IEE Proceedings Part D, 134, 338-346.
    [16] Tang, D., Chen, L., and Hu, E. (2014). A novel unknown-input estimator for disturbance estimation and compensation. Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia.
    [17] Termehchy, A. and Afshar, A. (2014). A novel design of unknown input observer for fault diagnosis in non-minimum phase systems. The International Federation of Automatic Control, Cape Town, South Africa. August 24-29, 2014.
    [18] Ting, H. C., Chang, J. I., and Chen, Y. P. (2011). Proportional-derivative unknown input observer design using descriptor system approach for non-minimum phase systems. International Journal of Control, Automation, and Systems, 9(5), 850-856.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE