| 研究生: |
蘇家慧 Su, Chia-Hui |
|---|---|
| 論文名稱: |
低損耗與低溫燒結微波介電材料之開發 Development of Low-Loss and Low Temperature Sintered Microwave Dielectric Materials |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 微波介電材料 、低損耗 、低溫 |
| 外文關鍵詞: | Microwave dielectric properties, Low-loss, Low-temperature |
| 相關次數: | 點閱:112 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於微波通訊系統的演進及發展,微型化、高效能和低成本已經成為微波元件的主要需求。微波介電共振器需具有高介電常數、高品質因素及趨近於零的溫度頻率飄移係數等特性,適合用於介質共振天線、濾波器、震盪器和雙工器。因此,高品質因素介電材料常應用於通訊系統中。由於具有低損耗的特性表現,也常設計於高效能微波元件上。然而,高介電常數陶瓷材料亦可達到微型化的目的,所以材料的選擇也是相當重要的課題。最後,穩定的溫度飄移係數讓我們在使用上不易受溫度影響。另外,低溫製程同時可降低成本以利大量生產。針對以上所述,本論文將以兩個部分加以探討及研究
In recent years, the wireless communication industry has experienced enormous growth, the microwave dielectric resonators (DR) having a high dielectric constant, high quality factor and near-zero temperature coefficient of resonant frequency and other features, suitable for a dielectric resonator, filters, oscillators, and duplexers. Due to the miniaturized, high performance and low cost has become the main demand of the microwave components, the high quality factor dielectric material often used in communications systems. As mentioned above, the main study of this dissertation is divided two parts which preparation of low loss and low temperature sintered of the microwave dielectric properties.
[1] C. F. Tseng, P. A. Lin, Microwave Dielectric Properties of Novel Glass‐Free Low‐Firing Li2CeO3 Ceramics. Journal of the American Ceramic Society 97, 1020-1022 (2014).
[2] H. Zhou, X. Liu, X. Chen, L. Fang, Y. Wang, ZnLi2/3Ti4/3O4: a new low loss spinel microwave dielectric ceramic. Journal of the European Ceramic Society 32, 261-265 (2012).
[3] S. Wu, J. Xue, R. Wang, J. Li, Synthesis, characterization and microwave dielectric properties of spinel MgGa2O4 ceramic materials. Journal of Alloys and Compounds 585, 542-548 (2014).
[4] L. Cheng, P. Liu, S.-X. Qu, H.-W. Zhang, Microwave dielectric properties of AWO4 (A= Ca, Ba, Sr) ceramics synthesized via high energy ball milling method. Journal of Alloys and Compounds 581, 553-557 (2013).
[5] C. F. Tseng, Relationships between Zr substitution for Ti and microwave dielectric properties in Mg (ZrxTi1−x)O3 ceramics. Journal of Alloys and Compounds 509, 9447-9450 (2011).
[6] J. J. Bian, Y. F. Dong, G. X. Song, Microwave Dielectric Properties of A‐Site Modified Ba(Co0.7Zn0.3)1/3Nb2/3O3 by La3+. Journal of the American Ceramic Society 91, 1182-1187 (2008).
[7] J. Bian, Z. Liang, L. Wang, Structural evolution and microwave dielectric properties of Li(3−3x)M4xNb(1−x)O4 (M= Mg, Zn; 0≤ x≤ 0.9). Journal of the American Ceramic Society 94, 1447-1453 (2011).
[8] P. V. Bijumon, M. Sebastian, P. Mohanan, Experimental investigations and three-dimensional transmission line matrix simulation of Ca5-xAxB2TiO12 (A= Mg, Zn, Ni, and Co; B= Nb and Ta) ceramic resonators. Journal of applied physics 98, 124105 (2005).
[9] S. George, M. T. Sebastian, Microwave dielectric properties of novel temperature stable high Q Li2Mg1−xZnxTi3O8 and Li2A1−xCaxTi3O8 (A= Mg, Zn) ceramics. Journal of the European Ceramic Society 30, 2585-2592 (2010).
[10] C.-L. Huang, Y.-W. Tseng, J.-Y. Chen, Y.-C. Kuo, Dielectric properties of high-Q (Mg1–xZnx)1.8Ti1.1O4 ceramics at microwave frequency. Journal of the European Ceramic Society 32, 2365-2371 (2012).
[11] S. S. Rajput, S. Keshri, Structural and microwave properties of (Mg,Zn/Co)TiO3 dielectric ceramics. Journal of Materials Engineering and Performance 23, 2103-2109 (2014).
[12] C. L. Huang, J. Y. Chen, Synthesis, Crystal Structure, and Microwave Dielectric Properties of (Mg1− xCox)Ta2O6 Solid Solutions. Journal of the American Ceramic Society 93, 470-473 (2010).
[13] A. Kan, H. Ogawa, A. Yokoi, Y. Nakamura, Crystal structural refinement of corundum-structured A4M2O9 (A= Co and Mg, M= Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction. Journal of the European Ceramic Society 27, 2977-2981 (2007).
[14] H. Shin, H.-K. Shin, H. S. Jung, S.-Y. Cho, K. S. Hong, Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass. Materials research bulletin 40, 2021-2028 (2005).
[15] A. Belous et al., High‐Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4. Journal of the American Ceramic Society 89, 3441-3445 (2006).
[16] E. S. Kim, C. J. Jeon, Microwave Dielectric Properties of ATiO3 (A= Ni, Mg, Co, Mn) Ceramics. Journal of the European Ceramic Society 30, 341-346 (2010).
[17] P. S. Anjana, M. T. Sebastian, Synthesis, characterization, and microwave dielectric properties of ATiO3 (A= Co, Mn, Ni) ceramics. Journal of the American Ceramic Society 89, 2114-2117 (2006).
[18] K. Matsumoto, T. Hiuga, K. Takada, H. Ichimura, in Applications of Ferroelectrics. 1986 Sixth IEEE International Symposium on. 118-121 (1986).
[19] H. Tamura, T. Konoike, Y. Sakabe, K. Wakino, Improved high‐Q dielectric resonator with complex perovskite structure. Journal of the American Ceramic Society 67, c59-c61 (1984).
[20] S. Kawashima, M. Nishida, I. Ueda, Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. Journal of the American Ceramic Society 66, 421-423 (1983).
[21] J. Zhang, R. Zuo, A novel self-composite property-tunable LaTiNbO6 microwave dielectric ceramic. Materials Research Bulletin 83, 568-572 (2016).
[22] X. Lyu et al., A novel low-loss spinel microwave dielectric ceramic CoZnTiO4. Journal of Materials Science: Materials in Electronics 26, 8663-8666 (2015).
[23] J. Wei et al., Ba9Y2Si6O24: A new silicate dielectric ceramic for microwave communication application. Materials Letters 178, 144-146 (2016).
[24] H. Zhou et al., Novel middle permittivity ceramic Ba4CoTi11O27: Sintering characteristic, cations distribution, crystal structure and microwave dielectric properties. Ceramics International 41, 5191-5195 (2015).
[25] W. S. Xia, F. Y. Yang, G. Y. Zhang, K. Han, D. Guo, New low-dielectric-loss NiZrNb2O8 ceramics for microwave application. Journal of Alloys and Compounds 656, 470-475 (2016).
[26] Y. Tang, L. Fang, C. Su, H. Zhang, A high Q and temperature stable microwave dielectric ceramic Ba4LiTa2SbO12. Ceramics International 40, 7633-7636 (2014).
[27] S. Wu, C. Jiang, Y. Mei, W. Tu, Synthesis and microwave dielectric properties of Sm2SiO5 ceramics. Journal of the American Ceramic Society 95, 37-40 (2012).
[28] Z. Fu, P. Liu, J. Ma, X. Zhao, H. Zhang, Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B= Ti, Sn, Zr). Journal of the European Ceramic Society 36, 625-629 (2016).
[29] X. Lyu et al., A new low-loss dielectric material ZnZrTa2O8 for microwave devices. Journal of the European Ceramic Society 36, 931-935 (2016).
[30] Y. W. Tseng, J. Y. Chen, Y. C. Kuo, C. L. Huang, Low-loss microwave dielectrics using rock salt oxide Li2MgTiO4. Journal of Alloys and Compounds 509, L308-L310 (2011).
[31] R. t. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32, 751-767 (1976).
[32] Z. He, D. Fu, T. Kyômen, T. Taniyama, M. Itoh, Crystal growth and magnetic properties of BaCo2V2O8. Chemistry of materials 17, 2924-2926 (2005).
[33] C. Hammond, The basics of crystallography and diffraction. (Oxford University Press Oxford), A54, 1037-1038 (1998).
[34] B. S. Mitchell, An introduction to materials engineering and science for chemical and materials engineers. John Wiley & Sons (2004).
[35] R. J. Finch, J. M. Hanchar, Structure and chemistry of zircon and zircon-group minerals. Reviews in mineralogy and geochemistry 53, 1-25 (2003).
[36] G. Bayer, Thermal expansion of ABO4-compounds with zircon-and scheelite structures. Journal of the Less Common Metals 26, 255-262 (1972).
[37] Y. Uchiyama et al., Spin-vacancy-induced long-range order in a new haldane-gap antiferromagnet. Physical review letters 83, 632-635 (1999).
[38] S. Itoh et al., Spin dynamics in S=3/2 one-dimensional Heisenberg antiferromagnets CsVCl3 and CsVBr3. Physical Review B 59, 14406 (1999).
[39] R. D. Adams, C. Payen, T. Datta, Syntheses, structural analyses, and unusual magnetic properties of Ba2CoSi2O7 and BaCo2Si2O7. Inorganic Chemistry 35, 3492-3497 (1996).
[40] S. Kobayashi, S. Mitsuda, M. Ishikawa, K. Miyatani, K. Kohn, Three-dimensional magnetic ordering in the quasi-one-dimensional Ising magnet CoNb2O6 with partially released geometrical frustration. Physical Review B 60, 3331-3345 (1999).
[41] S. Sōmiya, Handbook of advanced ceramics. Elsevier vol. 2 (2003).
[42] S. J. L. Kang, Sintering: densification, grain growth and microstructure. Butterworth-Heinemann (2004).
[43] L. C. De Jonghe, M. N. Rahaman, Sintering stress of homogeneous and heterogeneous powder compacts. Acta Metallurgica 36, 223-229 (1988).
[44] R. Cannon, The Effects of Dihedral Angle and Pressure on the Driving Forces for Pore Growth and Shrinkage. (1981).
[45] R. Young, Introduction to the Rietveld method. The Rietveld Method 5, 1-38 (1993).
[46] F. Izumi, R. Young, The Rietveld Method. Oxford University Press, Oxford (1993).
[47] H. H. Stern, Fundamental concepts of language teaching: Historical and interdisciplinary perspectives on applied linguistic research. Oxford University Press (1983).
[48] A. Larson, R. Von Dreele, GSAS General Structure Analysis System, Report LAUR 86-748. Los Alamos National Laboratory, Los Alamos, NM, (1986).
[49] B. H. Toby, EXPGUI, a graphical user interface for GSAS. Journal of applied crystallography 34, 210-213 (2001).
[50] B. H. Toby, R factors in Rietveld analysis: How good is good enough? Powder diffraction 21, 67-70 (2006).
[51] B. Kingery, H. Bowen, Uhlmann, introduction to Ceramics. John Wiley&Sons, New York, (1976).
[52] D. Kajfez, P. Guillon, Dielectric resonators. Norwood, MA, Artech House, Inc., 547 (1986).
[53] A. J. Moulson, J. M. Herbert, Electroceramics: materials, properties, applications. John Wiley & Sons (2003).
[54] L. L. Hench, J. K. West, Principles of electronic ceramics. (1989).
[55] Y. Kobayashi, M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Transactions on Microwave Theory and Techniques 33, 586-592 (1985).
[56] K. Wakino, T. Nishikawa, Y. Ishikawa, H. Tamura, Dielectric resonator materials and their applications for mobile communication systems. British ceramic. Transactions and journal 89, 39-43 (1990).
[57] V. Gurevich, A. Tagantsev, Intrinsic dielectric loss in crystals. Advances in Physics 40, 719-767 (1991).
[58] V. Gurevich, A. Tagantsev, Intrinsic Dielectric Losses in Crystals-Low-Temperatures. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 91, 245-261 (1986).
[59] D. Kajfez, P. Guillon. Dielectric Resonators. Noble Publishing Corporation (1998).
[60] R. Richtmyer, Dielectric resonators. Journal of Applied Physics 10, 391-398 (1939).
[61] M. W. Pospieszalski, Cylindrical dielectric resonators and their applications in TEM line microwave circuits. IEEE Transactions on Microwave Theory and Techniques 27, 233-238 (1979).
[62] A. Okaya, L. Barash, The dielectric microwave resonator. Proceedings of the IRE 50, 2081-2092 (1962).
[63] J. van Bladel, On the resonances of a dielectric resonator of very high permittivity. IEEE Transactions on Microwave Theory Techniques 23, 199-208 (1975).
[64] J. Van Bladel, The excitation of dielectric resonators of very high permittivity. IEEE Transactions on Microwave Theory Techniques 23, 208-217 (1975).
[65] S. A. Long, M. W. McAllister, L. C. Shen, The resonant cylindrical dielectric cavity antenna. IEEE Transactions on Antennas and Propagation 31, 406-412 (1983).
[66] M. McAllister, S. Long, Resonant hemispherical dielectric antenna. Electronics Letters 20, 657-659 (1984).
[67] M. McAllister, S. Long, G. Conway, Rectangular dielectric resonator antenna. Electronics Letters 19, 218 (1983).
[68] R. Mongia, A. Ittipiboon, P. Bhartia, M. Cuhaci, Electric-monopole antenna using a dielectric ring resonator. Electronics Letters 29, 1530-1531 (1993).
[69] A. A. Kishk, A. Ittipiboon, Y. Antar, M. Cuhaci, Slot excitation of the dielectric disk radiator. IEEE Transactions on Antennas and propagation 43, 198-201 (1995).
[70] D. Kajfez, A. W. Glisson, J. James, Computed modal field distributions for isolated dielectric resonators. IEEE transactions on Microwave Theory and Techniques 32, 1609-1616 (1984).
[71] B. Hakki, P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Transactions on Microwave Theory and Techniques 8, 402-410 (1960).
[72] W. E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Transactions on Microwave Theory and Techniques 18, 476-485 (1970).
[73] J. Krupka, K. Derzakowski, B. Riddle, J. Baker-Jarvis, A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature. Measurement Science and Technology 9, 1751 (1998).
[74] H. Tamura, H. Matsumoto, K. Wakino, Low temperature properties of microwave dielectrics. Japanese journal of applied physics 28, 21 (1989).
[75] J. Krupka, Frequency domain complex permittivity measurements at microwave frequencies. Measurement Science and Technology 17, R55 (2006).
[76] L. Li, M. Zhang, Q. Liao, W. Xia, X. Ding, Composite dielectrics (1−y)(Mg1−xZnx)1.8Ti1.1O4–yCaTiO3 suitable for microwave applications. Journal of Alloys and Compounds 531, 18-22 (2012).
[77] J. Bian, L. Wang, L. Yuan, Microwave dielectric properties of Li2+xTi1−4xNb3xO3 (0≤ x ≤ 0.1). Materials Science and Engineering: B 164, 96-100 (2009).
[78] S. Butee et al., High Q microwave dielectric ceramics in (Ni1−xZnx)Nb2O6 system. Journal of the American Ceramic Society 92, 1047-1053 (2009).
[79] L. Yuan, J. Bian, Microwave dielectric properties of the lithium containing compounds with rock salt structure. Ferroelectrics 387, 123-129 (2009).
[80] D. Zhou, H. Wang, L. X. Pang, X. Yao, X. G. Wu, Microwave dielectric characterization of a Li3NbO4 ceramic and its chemical compatibility with silver. Journal of the American Ceramic Society 91, 4115-4117 (2008).
[81] S. George, M. T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A= Mg, Zn) ceramics. Journal of the American Ceramic Society 93, 2164-2166 (2010).
[82] X. Chen, H. Zhou, L. Fang, X. Liu, Y. Wang, Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics. Journal of Alloys and Compounds 509, 5829-5832 (2011).
[83] V. S. Hernandez, L. M. T. Martinez, G. C. Mather, A. R. West, Stoichiometry, structures and polymorphism of spinel-like phases, Li1.33xZn2–2xTi1+0.67xO4. Journal of Materials Chemistry 6, 1533-1536 (1996).
[84] H. O'bryan, J. Thomson, J. Plourde, A New BaO‐TiO2 Compound with Temperature‐Stable High Permittivity and Low Microwave Loss. Journal of the American Ceramic Society 57, 450-453 (1974).
[85] C. L. Huang, M. H. Weng, C. C. Wu, C. C. Wei, Microwave dielectric properties and microstructures of V2O5-modified Zr0.8Sn0.2TiO4 ceramics. Japanese Journal of Applied Physics 40, 698 (2001).
[86] V. Ferreira, F. Azough, R. Freer, J. Baptista, The effect of Cr and La on MgTiO3 and MgTiO3–CaTiO3 microwave dielectric ceramics. Journal of materials research 12, 3293-3299 (1997).
[87] J. H. Sohn et al., Microwave dielectric characteristics of ilmenite-type titanates with high Q values. Japanese journal of applied physics 33, 5466-5470 (1994).
[88] C. L. Huang, S. S. Liu, Characterization of extremely low loss dielectrics (Mg0.95Zn0.05)TiO3 at microwave frequency. Japanese journal of applied physics 46, 283-285 (2007).
[89] E. S. Kim, B. S. Chun, R. Freer, R. J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. Journal of the European Ceramic Society 30, 1731-1736 (2010).
[90] M. Zhang, L. Li, W. Xia, Q. Liao, Structure and properties analysis for MgTiO3 and (Mg0.97M0.03)TiO3 (M= Ni, Zn, Co and Mn) microwave dielectric materials. Journal of Alloys and Compounds 537, 76-79 (2012).
[91] H. Ogawa, A. Kan, S. Ishihara, Y. Higashida, Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss. Journal of the European Ceramic Society 23, 2485-2488 (2003).
[92] C. L. Huang, Y. W. Tseng, J. Y. Chen, High-Q dielectrics using ZnO-modified Li2TiO3 ceramics for microwave applications. Journal of the European Ceramic Society 32, 3287-3295 (2012).
[93] C. L. Huang, J. Y. Chen, Low‐Loss Microwave Dielectrics Using Mg2(Ti1−xSnx)O4 (x= 0.01–0.09) Solid Solution. Journal of the American Ceramic Society 92, 2237-2241 (2009).
[94] A. Knyazev, M. Mączka, I. Ladenkov, E. Bulanov, M. Ptak, Crystal structure, spectroscopy, and thermal expansion of compounds in MI2O–Al2O3–TiO2 system. Journal of Solid State Chemistry 196, 110-118 (2012).
[95] A. Kazakopoulos, C. Sarafidis, K. Chrissafis, O. Kalogirou, Synthesis and characterization of inverse spinel LiNiVO4 and LiCoVO4 with impedance spectroscopy. Solid State Ionics 179, 1980-1985 (2008).
[96] F. Grant, Properties of rutile (titanium dioxide). Reviews of Modern Physics 31, 646-674 (1959).
[97] S. B. Cohn, Microwave bandpass filters containing high-Q dielectric resonators. IEEE Transactions on Microwave Theory and Techniques 16, 218-227 (1968).
[98] A. Templeton et al., Microwave dielectric loss of titanium oxide. Journal of the American Ceramic Society 83, 95-100 (2000).
[99] T. Luo, XPS analysis on chemical states of Li4SiO4 irradiated by 3keV. Journal of Nuclear Materials 408, 7-11 (2011).
[100] Y. Yuan, W. Du, X. Qian, ZnxGa2O3+x (0≤ x ≤ 1) solid solution nanocrystals: tunable composition and optical properties. Journal of Materials Chemistry 22, 653-659 (2012).
[101] Q. Tian, Y. Zhang, Y. Wu, XPS study on Mg0.9−xTi0.1PdxNi (x= 0.04, 0.06, 0.08, 0.1) hydrogen storage electrode alloys after charge–discharge cycles. Journal of Alloys and Compounds 484, 763-771 (2009).
[102] X. Zu et al., Surface characterization of a Ti–2Al–2.5Zr alloy by nitrogen ion implantation. Journal of alloys and compounds 351, 114-118 (2003).
[103] X. Yao, H. Lin, W. Chen, L. Luo, Anti-reduction of Ti4+ in Ba4.2Sm9.2Ti18O54 ceramics by doping with MgO, Al2O3 and MnO2. Ceramics International 38, 3011-3016 (2012).
[104] C. D. Wagner, G. Muilenberg, Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer (1979).
[105] T. Yuan, X. Yu, R. Cai, Y. Zhou, Z. Shao, Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. Journal of Power Sources 195, 4997-5004 (2010).
[106] T. Nakazawa, V. Grismanovs, D. Yamaki, Y. Katano, T. Aruga, Disordering in Li2TiO3 irradiated with high energy ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 206, 166-170 (2003).
[107] Y.-H. Zhang, C. K. Chan, J. F. Porter, W. Guo, Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis. Journal of materials research 13, 2602-2609 (1998).
[108] S. Jiang, Z. Yue, F. Shi, Effects of BaWO4 additive on Raman phonon modes and structure–property relationship of Ba (Mg1/3Ta2/3)O3 microwave dielectric ceramics. Journal of Alloys and Compounds 646, 49-55 (2015).
[109] Q. Liao, L. Li, Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: crystal structure refinement and Raman spectra study. Dalton Transactions 41, 6963-6969 (2012).
[110] E. Soo Kim, K. Hyun Yoon, DiP227: Microwave dielectric properties of complex perovskite Ba(Mg1/3Ta2/3)O3. Ferroelectrics 133, 187-192 (1992).
[111] M. Zhang, J. Zhai, B. Shen, X. Yao, MgO doping effects on dielectric properties of Ba0.55Sr0.45TiO3 ceramics. Journal of the American Ceramic Society 94, 3883-3888 (2011).
[112] I. Jawahar, M. Sebastian, P. Mohanan, Microwave dielectric properties of Ba5-xSrxTa4O15, Ba5NbxTa4-xO15 and Sr5NbxTa4−xO15 ceramics. Materials Science and Engineering: B 106, 207-212 (2004).
[113] I. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica Section B: Structural Science 41, 244-247 (1985).
[114] P. Zhang et al., Enhanced microwave dielectric properties of NdNbO4 ceramic by Ta5+ substitution. Journal of Alloys and Compounds 640, 90-94 (2015).
[115] L. A. Khalam, H. Sreemoolanathan, R. Ratheesh, P. Mohanan, M. Sebastian, Preparation, characterization and microwave dielectric properties of Ba(B′1/2Nb1/2)O3 [B′= La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb and In] ceramics. Materials Science and Engineering: B 107, 264-270 (2004).
[116] H. Wu, Z. Feng, Q. Mei, J. Guo, J. Bi, Correlations of crystal structure, bond energy and microwave dielectric properties of AZrNb2O8 (A= Zn, Co, Mg, Mn) ceramics. Journal of Alloys and Compounds 648, 368-373 (2015).
[117] C. H. Hsu, P. S. Tsai, C. F. Tseng, S. H. Hung, I. C. Huang, Microwave dielectric properties of Ca0.4−xMgxSm0.4TiO3 ceramics. Journal of Alloys and Compounds 582, 355-359 (2014).
[118] L. Cheng, P. Liu, S.-X. Qu, L. Cheng, H. Zhang, Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method. Journal of Alloys and Compounds 623, 238-242 (2015).
[119] G. h. Chen, J. c. Di, H. r. Xu, M. h. Jiang, C. l. Yuan, Microwave dielectric properties of Ca4La2Ti5−x(Mg1/3Nb2/3)xO17 ceramics. Journal of the American Ceramic Society 95, 1394-1397 (2012).
[120] C. Tian, Z. Yue, S. Meng, Y. Zhou, Structures and Microwave Dielectric Properties of Ba[Ti1−x(Co0.5W0.5)x]O3 (x= 0.40–0.90) Perovskite Ceramics. Journal of the American Ceramic Society 95, 1645-1650 (2012).
[121] L. A. Khalam, P. S. Anjana, M. T. Sebastian, The Effect of Dopants on the Dielectric Properties of Ba (B′1/2Ta1/2)O3 (B′= La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In) Microwave Ceramics. International Journal of Applied Ceramic Technology 6, 571-580 (2009).
[122] C. L. Huang, C. E. Ho, Microwave Dielectric Properties of (Mg1−xNix)2TiO4 (x= 0.02–0.1) Ceramics. International Journal of Applied Ceramic Technology 7, (2010).
[123] N. H. Nguyen, J. B. Lim, S. Nahm, J. H. Paik, J. H. Kim, Effect of Zn/Si ratio on the microstructural and microwave dielectric properties of Zn2SiO4 ceramics. Journal of the American Ceramic Society 90, 3127-3130 (2007).
[124] E. S. Kim, C. J. Jeon, P. G. Clem, Effects of crystal structure on the microwave dielectric properties of ABO4 (A= Ni, Mg, Zn and B= Mo, W) ceramics. Journal of the American Ceramic Society 95, 2934-2938 (2012).
[125] R. Deblieck, G. Van Tendeloo, J. Van Landuyt, S. Amelinckx, A structure classification of symmetry-related perovskite-like ABX4 phases. Acta Crystallographica Section B: Structural Science 41, 319-329 (1985).
[126] D. Zhou et al., Influence of Ce Substitution for Bi in BiVO4 and the Impact on the Phase Evolution and Microwave Dielectric Properties. Inorganic Chemistry 53, 1048-1055 (2014).
[127] J. Moulder, W. Stickle, P. Sobol, K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy ed J Chastain. Eden Prairie, MN: Perkin-Elmer Corporation (1992).
[128] M. C. Biesinger, L. W. Lau, A. R. Gerson, R. S. C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science 257, 887-898 (2010).
[129] Q. Xu et al., X-ray photoelectron spectroscopy investigation on chemical states of oxygen on surfaces of mixed electronic–ionic conducting La0.6Sr0.4Co1−yFeyO3 ceramics. Applied surface science 228, 110-114 (2004).
[130] C. Wager, W. Riggs, L. Davis, J. Moulder, G. Muilenberg, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation. Physical Electronics Division, Eden Prairie Minn 55344, (1979).
[131] X. Cheng et al., Growth and characterization of Y2O3 thin films. Physica B: Condensed Matter 404, 146-149 (2009).
[132] M. Azdouz et al., Crystal chemistry, Rietveld refinements and Raman spectroscopy studies of the new solid solution series: Ba3−xSrx(VO4)2 (0≤ x ≤ 3). Journal of Alloys and Compounds 498, 42-51 (2010).
[133] A. Grzechnik, P. F. McMillan, High pressure behavior of Sr3(VO4)2 and Ba3(VO4)2. Journal of Solid State Chemistry 132, 156-162 (1997).
[134] T. Sekiya, N. Mochida, A. Ohtsuka, Raman spectra of MO-TeO2 (M= Mg, Sr, Ba and Zn) glasses. Journal of non-crystalline solids 168, 106-114 (1994).
[135] Q. Liao, L. Li, X. Ren, X. Ding, New Low‐Loss Microwave Dielectric Material ZnTiNbTaO8. Journal of the American Ceramic Society 94, 3237-3240 (2011).
[136] Y. Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology. Springer Science & Business Media (2005).
[137] C. L. Huang, W. R. Yang, P. C. Yu, High-Q microwave dielectrics in low-temperature sintered (Zn1−xNix)3Nb2O8 ceramics. Journal of the European Ceramic Society 34, 277-284 (2014).
[138] H. Zhou, J. Gong, G. Fan, X. Chen, Enhanced sintering ability and microwave dielectric properties of LiZnNbO4 ceramics with pretreatment of raw materials. Journal of Alloys and Compounds 665, 113-118 (2016).
[139] H. J. Jo, E. S. Kim, Effects of structural characteristics on microwave dielectric properties of MgTi1-x(Mg1/3B2/3)xO3 (B= Nb, Ta). Journal of the European Ceramic Society 36, 1399-1405 (2016).
[140] M.-Y. Chen, J. Juuti, C.-S. Hsi, C.-T. Chia, H. Jantunen, Dielectric BaTiO3–BBSZ glass ceramic composition with ultra-low sintering temperature. Journal of the European Ceramic Society 35, 139-144 (2015).
[141] W. R. Yang, P. Z. Huang, C. L. Huang, Microwave dielectric properties of low-loss (Zn1−xCox)3Nb2O8 ceramics for LTCC applications. Journal of Alloys and Compounds 620, 18-23 (2015).
[142] Y. Jin, L. Li, H. Dong, S. Yu, D. Xu, Structures, phase transformations, and dielectric properties of (1−x)Bi2Zn2/3Nb4/3O7–xBi1.5NiNb1.5O7 pyrochlore ceramics prepared by aqueous sol–gel method. Journal of Alloys and Compounds 622, 200-205 (2015).
[143] H. Guo et al., A Novel Low‐Firing and Low Loss Microwave Dielectric Ceramic Li2Mg2W2O9 with Corundum Structure. Journal of the American Ceramic Society 98, 3863-3868 (2015).
[144] L. Li, Y. Jin, H. Dong, S. Yu, D. Xu, Structures, phase transformations, and dielectric properties of Bi2(Zn1−xMgx)2/3Nb4/3O7 pyrochlore ceramics as temperature stable LTCC material. Journal of Alloys and Compounds 604, 31-35 (2014).
[145] C. F. Tseng, P. J. Tseng, C. M. Chang, Y. C. Kao, Novel temperature stable Li2MnO3 dielectric ceramics with high Q for LTCC applications. Journal of the American Ceramic Society 97, 1918-1922 (2014).
[146] L. Fang, H. Guo, W. Fang, Z. Wei, C. Li, BaTa2V2O11: A novel low fired microwave dielectric ceramic. Journal of the European Ceramic Society 35, 3765-3770 (2015).
[147] W. B. Li, H. H. Xi, D. Zhou, Microwave dielectric properties of LiMVO4 (M= Mg, Zn) ceramics with low sintering temperatures. Ceramics International 41, 9063-9068 (2015)
[148] Y. Wang, R. Zuo, C. Zhang, J. Zhang, T. Zhang, Low‐Temperature‐Fired ReVO4 (Re= La, Ce) Microwave Dielectric Ceramics. Journal of the American Ceramic Society 98, 1-4 (2015).
[149] R. Umemura, H. Ogawa, H. Ohsato, A. Kan, A. Yokoi, Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. Journal of the European Ceramic Society 25, 2865-2870 (2005).
[150] R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, A. Kan, Low-temperature sintering-microwave dielectric property relations in Ba3(VO4)2 ceramic. Journal of alloys and compounds 424, 388-393 (2006).
[151] E. Murashov, Y. A. Velikodnyj, V. Trunov, Crystal structures of double pyrovanadates BaMV2O7 (M=Ca, Cd, Zn). Zhurnal Neorganicheskoj Khimii 34, 1388-1392 (1989).
[152] L. Fang, Z. Wei, C. Su, F. Xiang, H. Zhang, Novel low-firing microwave dielectric ceramics: BaMV2O7 (M= Mg, Zn). Ceramics International 40, 16835-16839 (2014).
[153] Y. A. Velikodnyj, V. Trunov, V. Zhuravlev, L. Makarevich, Crystal structure of BaMg2(VO4)2. Kristallografiya 27, 226-228 (1982).
[154] I. Siny, R. Tao, R. Katiyar, R. Guo, A. Bhalla, Raman spectroscopy of Mg-Ta order-disorder in BaMg13Ta23O3. Journal of Physics and Chemistry of Solids 59, 181-195 (1998)
[155] A. Dias, L. A. Khalam, M. T. Sebastian, C. W. A. Paschoal, R. L. Moreira, Chemical substitution in Ba (RE1/2Nb1/2)O3 (RE= La, Nd, Sm, Gd, Tb, and Y) microwave ceramics and its influence on the crystal structure and phonon modes. Chemistry of materials 18, 214-220 (2006).
[156] T. L. Sun, X. M. Chen, Raman spectra analysis for Ba[(Mg1-xNix)1/3Nb2/3]O3 microwave dielectric ceramics. AIP Advances 5, 017106 (2015).
[157] S. Ramarao, S. R. Kiran, V. Murthy, Structural, lattice vibrational, optical and microwave dielectric studies on Ca1−xSrxMoO4 ceramics with scheelite structure. Materials Research Bulletin 56, 71-79 (2014).
[158] Y. Zhang, Y. Zhang, M. Xiang, Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics. Journal of the European Ceramic Society 36, 1945-1951 (2016).
[159] H. Chen, B. Tang, Z. Xiong, S. Zhang, Microwave Dielectric Properties of Aluminum‐Substituted Ba6−3xNd8+2xTi18O54 Ceramics. International Journal of Applied Ceramic Technology, (2016).
[160] W. R. Yang, C. C. Pan, C. L. Huang, Influence of Mg substitutions for Zn on the phase relation and microwave dielectric properties of (Zn1−xMgx)3Nb2O8 (x= 0.02–1.0) system. Journal of Alloys and Compounds 581, 257-262 (2013).
[161] R. D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied Physics 73, 348-366 (1993).
[162] J. Li, Y. Han, T. Qiu, C. Jin, Effect of bond valence on microwave dielectric properties of (1−x)CaTiO3–x(Li0.5La0.5)TiO3 ceramics. Materials Research Bulletin 47, 2375-2379 (2012).
[163] H. S. Park, K. H. Yoon, E. S. Kim, Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1−xCax)[Fe0.5(Nb1−yTay)0.5]O3. Journal of the American Ceramic Society 84, 99-103 (2001).
[164] N. Brese, M. O'keeffe, Bond-valence parameters for solids. Acta Crystallographica Section B: Structural Science 47, 192-197 (1991).
[165] T. Hirata, Oxygen Position, Octahedral Distortion, and Bond‐Valence Parameter from Bond Lengths in Ti1−xSnxO2 (0≤ x ≤ 1). Journal of the American Ceramic Society 83, 3205-3207 (2000).
[166] E. S. Kim, K. H. Yoon, Microwave dielectric properties of (1−x)CaTiO3–xLi1/2 Sm1/2TiO3 ceramics. Journal of the European Ceramic Society 23, 2397-2401 (2003).
[167] E. S. Kim, W. Choi, Effect of phase transition on the microwave dielectric properties of BiNbO4. Journal of the European Ceramic Society 26, 1761-1766 (2006).
[168] L. Li, H. Sun, X. Lv, S. Li, Microstructure and microwave dielectric characteristics of the CaxZn1−xTiNb2O8 temperature stable ceramics. Journal of Materials Science: Materials in Electronics 27, 126-133 (2016).
校內:2021-07-27公開