簡易檢索 / 詳目顯示

研究生: 謝霆翰
Hsieh, Ting-Han
論文名稱: 儲能系統參與輔助服務之最佳容量規劃與壽命分配
Optimal Capacity Planning and Lifetime Allocation of ESS for Participation in Ancillary Services
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 68
中文關鍵詞: 儲能系統輔助服務容量規劃壽命分配差分進化演算法
外文關鍵詞: energy storage system, ancillary service, capacity planning, lifetime allocation, differential evolution algorithm
相關次數: 點閱:107下載:48
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當再生能源滲透率提高時,由於再生能源的間歇性和電力系統慣量減少,導致電力系統頻率響應能力下降。有鑑於此,我國即將開放日前輔助服務市場,提供經濟誘因鼓勵併網型儲能系統提供調頻備轉和即時備轉等輔助服務支持電網運轉。
    因為這兩種輔助服務有不同的技術規範、容量價格、效能價格和操作儲能系統造成的劣化損失,適當的將儲能系統壽命分配至這兩種輔助服務可獲得較大的投資效益。一般而言,為獲得較大的儲能系統投資效益,可讓儲能系統參與容量費與效能費較高但電池循環劣化較大的調頻備轉,當儲能系統劣化至某個程度,再參與容量費與效能費較低但電池循環劣化較小的即時備轉。
    本研究提出儲能系統參與輔助服務調頻備轉和即時備轉之最佳容量規劃與壽命分配方法,並利用差分進化演算法加以求解。模擬案例探討不同調頻備轉商品規格、儲能系統電池價格、累計電力系統頻率偏移量和即時備轉平均執行週期之規劃結果。模擬結果不僅顯示本研究提出之最佳化方法的有效性,並指出在歷史電力系統頻率中,以sReg參與調頻備轉的投資報酬率最高。然而dReg0.5的投資報酬率對累計頻率偏移量較不靈敏,若未來累計頻率偏移量增加,則以dReg0.5參與調頻備轉的投資報酬率最高。

    When the renewable energy penetration increases, the power system frequency response capability decreases due to renewable energy intermittency and reduced power system inertia. Therefore, Taiwan is going to deregulate the ancillary service market in the immediate future, and that provides the economic incentive to install grid-connected energy storage system (ESS) and supply ancillary service which supports the power system operation, such as regulation reserve and spinning reserve.
    Owing to different technical specification, capacity payment, effectiveness payment and ESS degradation between these ancillary services, It is possible to obtain higher profit by suitable allocating ESS lifetime for each service. Generally, in order to obtain the higher profit, ESS could be initially employed to supply regulation reserve with higher payment and larger cycle degradation; after certain ESS degradation, the used ESS is employed to supply spinning reserve with lower payment and lesser cycle degradation.
    This research proposes the optimal capacity planning and lifetime allocation method of ESS for participation in regulation reserve and spinning reserve, and this optimization problem is solved by differential evolution algorithm. Case studies explore the planning result under different technical specification of regulation reserve, battery price, cumulative frequency deviation, and mean execution period of spinning reserve. Simulation results not only demonstrate the effectiveness of the proposed method, but also indicate that sReg can obtain the highest rate of return within historical frequency data. Nonetheless, the rate of return of dReg0.5 is insensitive to the cumulative frequency deviation. If the cumulative frequency deviation increases, then dReg0.5 can obtain the highest rate of return.

    摘要 I EXTENDED ABSTRACT II 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究方法與貢獻 4 1.4 論文架構 5 第二章 系統架構 6 2.1 系統架構介紹 6 2.2 鋰電池儲能系統 6 2.3 日前輔助服務市場機制 9 2.3.1 調頻備轉 10 2.3.2 即時備轉 13 第三章 最佳容量規劃與壽命分配方法 15 3.1 簡介 15 3.2 最佳化方法架構 15 3.3 問題描述 19 3.3.1 儲能系統建置成本 19 3.3.2 儲能系統操作成本 19 3.3.3 輔助服務收入 21 3.3.4 儲能系統限制條件 22 3.3.5 目標函數 24 3.4 差分進化演算法 25 第四章 模擬結果 29 4.1 簡介 29 4.2 模擬系統相關參數 29 4.2.1 儲能系統相關參數 29 4.2.2 日前輔助服務市場相關參數 30 4.2.3 電力系統頻率 30 4.3 模擬案例與結果分析 32 4.3.1 不同調頻備轉商品規格之規劃結果 32 4.3.2 不同儲能系統電池價格之規劃結果 43 4.3.3 不同累計電力系統頻率偏移量之規劃結果 48 4.3.4 不同即時備轉平均執行週期之規劃結果 54 4.3.5 儲能系統應用於電能套利之投資效益分析 59 第五章 結論與未來研究方向 61 5.1 結論 61 5.2 未來研究方向 62 參考文獻 63

    [1] 蘇金勝,臺灣能源轉型機會與挑戰,《工程》第93卷01期,2020年3月。
    [2] 經濟部,能源轉型白皮書,2020年9月。
    [3] H. I. Su and A. E. Gamal, “Modeling and Analysis of the Role of Energy Storage for Renewable Integration: Power Balancing,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4109-4117, Nov. 2013.
    [4] C. O. Dwyer, L. Ryan, and D. Flynn, “Efficient Large-Scale Energy Storage Dispatch: Challenges in Future High Renewable Systems,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3439-3450, Sep. 2017.
    [5] V. Gevorgian, Y. Zhang, and E. Ela, “Investigating the Impacts of Wind Generation Participation in Interconnection Frequency Response,” IEEE Transactions on Sustainable Energy, vol. 6, no. 3, pp. 1004-1012, Jul. 2015.
    [6] T. Kerdphol, M. Watanabe, K. Hongesombut, and Y. Mitani, “Self-Adaptive Virtual Inertia Control-Based Fuzzy Logic to Improve Frequency Stability of Microgrid with High Renewable Penetration,” IEEE Access, vol. 7, pp. 76071-76083, Jun. 2019.
    [7] C. Jin, W. Li, J. Shen, P. Li, L. Liu, and K. Wen, “Active Frequency Response Based on Model Predictive Control for Bulk Power System,” IEEE Transactions on Power Systems, vol. 34, no. 4 pp. 3002-3018, Feb. 2019.
    [8] 電力調度處,電力交易市場訓練課程系列:輔助服務概論,2021年4月。
    [9] Y. Yang, Q. Ye, L. J. Tung, M. Greenleaf, and H. Li, “Integrated Size and Energy Management Design of Battery Storage to Enhance Grid Integration of Large-Scale PV Power Plants,” IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 394-402, Jan. 2018.
    [10] I. Alsaidan, A. Khodaei, and W. Gao, “A Comprehensive Battery Energy Storage Optimal Sizing Model for Microgrid Applications,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 3968-3980, Jul. 2018.
    [11] S. Pinedaand and J. M. Morales, “Chronological Time-Period Clustering for Optimal Capacity Expansion Planning with Storage,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7162-7170, Nov. 2018.
    [12] S. Bandyopadhyay, G. R. C. Mouli, Z. Qin, L. R. Elizondo, and P. Bauer, “Techno-Economical Model Based Optimal Sizing of PV-Battery Systems for Microgrids,” IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1657-1668, Jul. 2020.
    [13] S. Mohamed, M. G. Shaaban, M. Ismail, E. Serpedin, and K. A. Qaraqe, “An Efficient Planning Algorithm for Hybrid Remote Microgrids,” IEEE Transactions on Sustainable Energy, vol. 10, no. 1, pp. 257-267, Jan. 2019.
    [14] X. Wu and Y. Jiang, “Source-Network-Storage Joint Planning Considering Energy Storage Systems and Wind Power Integration,” IEEE Access, vol. 7, pp. 137330-137343, Sep. 2019.
    [15] H. Xie, X. Teng, Y. Xu, and Y. Wang, “Optimal Energy Storage Sizing for Networked Microgrids Considering Reliability and Resilience,” IEEE Access, vol. 7, pp. 86336-86348, Jun. 2019.
    [16] A. Khayatian, M. Barati, and G. J. Lim, “Integrated Microgrid Expansion Planning in Electricity Market with Uncertainty,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp.3634-3643, Jul. 2018.
    [17] L. Zenginis, J. S. Vardakasa, J. Abadal, C. Echave, M. M. Guell, and C. Verikoukis, “Optimal Power Equipment Sizing and Management for Cooperative Buildings in Microgrids,” IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 158-172, Jan. 2019.
    [18] F. Gang, S. Yu, and M. Liu, “An Improved Shapley Value-Based Profit Allocation Method for CHP-VPP,” Energy, vol. 213, Dec. 2020.
    [19] S. Yan, Y. Zheng, and D. J. Hill, “Frequency Constrained Optimal Siting and Sizing of Energy Storage,” IEEE Access, vol. 7, pp. 91785-91798, Jul. 2019.
    [20] Y. Du, Z. Wang, G. Liu, X. Chen, H. Yuan, Y. Wei, and F. Li, “A Cooperative Game Approach for Coordinating Multi-Microgrid Operation within Distribution Systems,” Applied Energy, vol. 222, pp. 383-395, Jul. 2018.
    [21] B. Lian, A. Sims, D. Yu, C. Wang, and R. W. Dunn, “Optimizing LiFePO4 Battery Energy Storage Systems for Frequency Response in the UK System,” IEEE Transactions on Sustainable Energy, vol. 8, no. 1, pp. 385-394, Jan. 2017.
    [22] A. Kumar, N. K. Meena, A. R. Singh, Y. Deng, X. He, R. C. Bansal, and P. Kumar, “Strategic Integration of Battery Energy Storage Systems with the Provision of Distributed Ancillary Services in Active Distribution Systems,” Applied Energy, vol. 253, Nov. 2019.
    [23] G. Cardoso, M. Stadler, S. Mashayekh, and E. Hartvigsson, “The Impact of Ancillary Services in Optimal DER Investment Decisions,” Energy, vol. 130, pp. 99-112, Jul. 2017.
    [24] X. Zhao, X. Shen, Q. Guo, H. Sun, and S. S. Oren, “A Stochastic Distribution System Planning Method Considering Regulation Services and Energy Storage Degradation,” Applied Energy, vol. 277, Nov. 2020.
    [25] B. Xu, Y. Wang, Y. Dvorkin, R. F. Blanco, C. A. S. Monroy, J. P. Watson, and D. S. Kirschen, “Scalable Planning for Energy Storage in Energy and Reserve Markets,” IEEE Transactions on Power Systems, vol. 32, no. 6, pp.4515-4527, Nov. 2017.
    [26] F. Sorourifar, V. M. Zavala, and A. W. Dowling, “Integrated Multiscale Design, Market Participation, and Replacement Strategies for Battery Energy Storage Systems,” IEEE Transactions on Sustainable Energy, vol. 11, no. 1, pp. 84-92, Jan. 2020.
    [27] N. A. E. Taweel, H. Khani, and H. E. Z. Farag, “Optimal Sizing and Scheduling of LOHC-Based Generation and Storage Plants for Concurrent Services to Transportation Sector and Ancillary Services Market,” IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1381-1393, Jul. 2020.
    [28] Y. Zhang, H. Khani, Y. Xu, H. Yang, Z. Y. Dong, and R. Zhang, “Optimal Whole-Life-Cycle Planning of Battery Energy Storage for Multi-Functional Services in Power Systems,” IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2077-2086, Oct. 2020.
    [29] J. Gustavsson, “Energy Storage Technology Comparison,” KTH School of Industrial Engineering and Management Energy Technology, 2016.
    [30] Asian Development Bank, “Handbook on Battery Energy Storage System,” Dec. 2018.
    [31] X. Hu, C. Zou, C. Zhang, and Y. Li, “Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management Needs,” IEEE Power and Energy Magazine, vol. 15, no. 5, pp. 20-31, Sept.-Oct.2017.
    [32] P. Li1, Y. Zhao1, Y. Shen, and S. H. Bo, “Fracture Behavior in Battery Materials”, Journal of Physics: Energy, vol. 2, no. 2, Apr. 2020.
    [33] P. Keil, S. F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R. C. Karl, and A. Jossen, “Calendar Aging of Lithium-Ion Batteries,” Journal of The Electrochemical Society, vol. 163, no. 9, Jul. 2016.
    [34] S. F. Schuster, T. Bach, E. Fledar, J. Muller, M. Brand, G. Sextl, and A. Jossen, “Nonlinear Aging Characteristics of Lithium-Ion Cells under Different Operational Conditions,” Journal of Energy Storage, vol. 1, pp. 44-53, Jun. 2015.
    [35] X. G. Yang, Y. Leng, G. Zhang, S. Ge, and C. Y. Wang, “Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition from Linear to Nonlinear Aging,” Journal of Power Sources, vol. 360, pp.28-40, Aug. 2017.
    [36] S. Atalay, M. Sheikh, A. Mariani, Y. Merla, E. Bower, and W. D. Widanage, “Theory of Battery Ageing in a Lithium-Ion Battery: Capacity Fade, Nonlinear Ageing and Lifetime Prediction,” Journal of Power Sources, vol. 478, Dec. 2020.
    [37] D. Gabrielle, “The Second Life Battery Cycle: After about 10 Years in Vehicle, Lithium-Ion Batteries Can Be Reused for Another Purpose and thereby Begin a “Second Life”,” Capgemini Invent, Apr. 2019. [Online]. Available: https://www.capgemini.com/2019/04/second-life-batteries-a-sustainable-business-opportunity-not-a-conundrum/
    [38] 電力調度處,輔助服務及備用容量交易試行平台第三次公開說明會,2021年4月。
    [39] 電力調度處,輔助服務及備用容量交易試行平台第二次公開說明會,2020年11月。
    [40] 台電公司,台灣電力股份有限公司輔助服務及備用容量交易試行平台管理規範及作業程序草案總說明,2021年4月。
    [41] M. Petrelli, D. Fioriti, A. Berizzi, and Davide Poli, “Multi-Year Planning of a Rural Microgrid Considering Storage Degradation,” IEEE Transactions on Power Systems, vol. 36, no. 2, pp. 1459-1469, Mar. 2021.
    [42] B. Xu, J. Zhao, T. Zheng, E. Litvinov, and D. S. Kirschen, “Factoring the Cycle Aging Cost of Batteries Participating in Electricity Markets,” IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 2248-2259, Mar. 2018.
    [43] K. P. Wong and Z. Y. Dong, “Differential Evolution, an Alternative Approach to Evolutionary Algorithm, Invited Book Chapter,” in Modern Heuristic Optimization: Theory and Applications to Power Systems, Wiley, 2008.
    [44] T. Sum-Im, G. A. Taylor, M. R. Irving, and Y. H. Song, “Differential Evolution Algorithm for Static and Multistage Transmission Expansion Planning,” IET Generation, Transmission and Distribution, vol. 3, no. 4, pp. 365-384, 2009.
    [45] 台電公司,各種發電方式之發電成本,[Online]. Available: https://www.taipower.com.tw/taipower/content/govern/govern05_.aspx
    [46] 台電公司,儲能自動頻率控制(AFC)調頻輔助服務案招標規範,2019年。
    [47] 中華民國中央銀行,重貼現率,[Online]. Available: https://www.cbc.gov.tw/tw/lp-640-1.html
    [48] U.S. Department of Energy, “Energy Storage Grand Challenge: Energy Storage Market Report”,” Dec. 2020.
    [49] 台電公司,電價表,107年6月26日,[Online]. Available: https://www.taipower.com.tw/upload/238/2018070210412196443.pdf

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE