| 研究生: |
洪一安 Hung, I-An |
|---|---|
| 論文名稱: |
建築物中庭通風效益評估之研究 Assessment of Ventilation Efficiency for the Courtyard of Buildings |
| 指導教授: |
林憲德
Lin, Hsien-Te |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 建築中庭 、通風評估 、CFD電腦模擬 、田口式直交表實驗計劃法 |
| 外文關鍵詞: | Courtyard space, Ventilation assessment, CFD, Taguchi method |
| 相關次數: | 點閱:132 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對矩形建築物戶外中庭空間的夏季通風環境,以田口式直交表實驗計劃法,有效地簡化眾多通風因子與模擬組合,再運用計算流體力學(Computation Fluid Dynamic, CFD)數值模擬進行解析,之後換算為通風潛力值VP(Ventilation Potential)來探討中庭空間1.5m高人行尺度的風環境概況。
為了提供給一般使用者在建築規劃設計階段時的參考,本研究根據國內外相關文獻,並彙整大量的CFD電腦模擬數據,進行戶外通風評估因子的簡化分析。針對矩形建築物中庭的風向、開口率、開口邊數、中庭寬深比及樓層高度的不同,計算其在不同因子的水準下影響效力。最後並提供三種中庭寬深比(2:1、1:1、1:2)在不同定量水準下的VP值表,及不同開口邊數(一邊開口、對邊開口、側邊開口、三邊開口及四邊開口)下的VP值迴歸預測公式。
在所有的影響因子中,風向通常為顯著的因子,且中庭VP值的趨勢為開口斜向入風>開口迎風>開口背風。另外開口邊數與開口率也均與VP值呈現正相關性。在各開口邊數的不同下,主要影響因子也不同:一邊開口的中庭量體為風向;對邊開口量體為風向、開口率及樓高;側邊開口量體為風向;三邊開口量體為風向及開口率;四邊開口量體則為開口率及樓高為主。
最後,根據中庭通風簡算法的評估方式,本研究以數個建築中庭的實測風速值來加以比對,結果顯示其相關係數r=0.82,兩者差值之標準差σ為0.13,表示其具有信賴度。此中庭風場簡易評估法能使一般人能不必透過專業的實驗模擬,便可容易了解其建築物中庭空間的風場環境概況,可作為未來改善夏季通風環境的參考指標,以確保行人的戶外舒適性。
This study investigates the ventilation environment above the ground 1.5m of the courtyard space for the rectangle courtyard building in summer. It applies the Taguchi method to simplify the various factors and experiment compositions, then uses the Computation Fluid Dynamic (CFD) simulation to propose the Ventilation Potential (VP).
This study also sorts the CFD simulation data of the previous researches to analyze and simplify the assessment factors, and calculates their efficiency for different level, including wind directions, aperture ratio, opening sides, courtyard’s width-to-depth ratio and building height. Finally, it creates an assessment system by several tables and regression formulas of courtyard wind environment.
Almost all related researches showed that the wind directions usually play a significant role affects wind environment, it can get higher VP value especially when the incident angle of prevailing wind direction is oblique to courtyard opening. Besides, the more opening sides and aperture ratio can increase the VP value as well.
Furthermore, the different opening sides go with the different influence factors, such as the influence factor for one-side opening group and the adjacent side openings group is wind direction; For the opposite-side openings group, its influence factors are wind direction, aperture ratio and building height; and the three side openings group’s influence factors are wind direction and aperture ratio; As for the four side openings group’s influence factors are aperture ratio and building height.
At last, the study measures the wind speeds of several courtyard buildings, using them to compare with this assessment system, the result shows that the correlation is high(r=0.82), and the standard deviation is 0.13. It reveals the assessment system is reliable. So, general users can easily use the assessment system to understand the wind environment of a courtyard building approximately, and applies it to the architectural design for assuring the comfort of courtyard environment in the future.
(一)中文文獻
1. 丁育群,朱佳仁,高層建築物風場環境評估準則研議,內政部建築研究所計劃報告,內政部建築研究所,新北市,2000。
2. 內政部建築研究所,都市熱島與生態社區評估手冊,內政部建築研究所,台灣,2010。
3. 中央氣象局網站,www.cwb.gov.tw/,2013。
4. 中國建設部,城市居住區熱環境設計標準,中國建設部,中國,2011。
5. 王福軍,計算流體動力學分析-CFD軟件原理與應用,清華大學出版社,2008。
6. 朱佳仁,環境流體力學,科技圖書出版公司,台北市,2003。
7. 朱佳仁,風工程概論,科技圖書出版公司,台北市,2006。
8. 行政院主計總處網站,http://www.dgbas.gov.tw/mp.asp?mp=1,2012。
9. 行政院環保署網站,http://www.epa.gov.tw/,2013。
10. 林君娟,謝俊民,程琬鈺,建立都市住宅風環境舒適度指標與改善策略評估-以台南市大林住宅都市更新地區為例,建築與規劃學報,(11)3,221-241,2010。
11. 林憲德,城鄉生態,詹氏書局,台北,1999。
12. 林憲德,綠色建築,詹氏書局,台北,2006。
13. 林憲德,人居熱環境,詹氏書局,台北,2009。
14. 林憲德,郭曉青,李魁鵬,陳子謙,陳冠廷,台灣海岸型城市之都市熱島現象與改善對策解析-以台南、高雄及新竹為例,都市與計劃,(28)3,323-341,2001。
15. 李偉誠,謝俊民,連棟住宅之街廓比對街谷內風環境之影響--以台南市氣象資料為例,建築學報,(75),135-153,2011。
16. 吳黛岑,集合住宅中庭植栽微氣候之數值模擬研究,碩士論文,國立成功大學建築所,台南市,2006。
17. 邱英浩、吳孟芳、譚政泓,不同街谷形式對都市風場之影響,建築與規劃學報,(9)2,141-165,2008。
18. 邱英浩,建築配置形式對戶外空間環境風場之影響,都市與計劃,38(3),303~325,2011。
19. 香港中文大學,戶外空氣流通評估方法的可行性研究,香港中文大學,香港,2005。
20. 孫振義,運用遙測技術於都市熱島效應之研究,博士論文,國立成功大學建築所,台南市,2008。
21. 陳若華 等人,建築配置與自然通風評估模式之研究,內政部建築研究所計劃報告,內政部建築研究所,新北市,2001。
22. 陳信樟,微氣候對林口國宅社區影響之研究 : 以風洞模擬風對住宅群之影響,臺灣省住都局,淡江大學建築研究所,台北,1985。
23. 賈力、解國珍,陳向東,室內氣流模擬過程中計算流力體學的紊流模型評價與選擇,製冷空調與電力機械,第2期,pp.42-45,2005。
24. 趙福雲、湯廣發、劉娣、劉志強、王漢青,CFD數值模擬的系統誤差反饋及其實現,暖通空調,第6期,2004。
25. 熊萬銀,雙棟建築改變棟距之風環境研究,成大碩士論文,國立成功大學建築研究所,1996。
26. 鄭寶祺、吳恩融 (2004),空氣流通方法可行性之研究,香港中文大學,香港。
27. 劉姵君,中庭建築浮力通風評估之研究-以計算流體力學(CFD)及縮尺空氣模型為例,成大碩士論文,國立成功大學建築研究所,2007。
28. 蕭江碧 等人,建築群配置方式與自然通風效應之研究。內政部建築研究所計劃報告。內政部建築研究所,新北市,1999。
29. 鷲尾泰俊,實驗計劃法,華泰圖書文物公司,台北市,1991。
(二)日文文獻
1. Tool-4 CASEEE-HI(ヒ-トアイランド)評價マニユアル,財團法人建築環境省エネルギ-機構,日本,2006。
2. 田口玄一,實驗計劃法(新版)上.下,丸善,日本,1962。
3. 陳,大岡,原山,加藤. (2002). 深圳の屋外環境共生空間に関する研究 (その 1) CFD 解析による建物形状・植栽配置の変化が屋外温熱環境改善効果に及ぼす検討. 日本建築学会大会学術講演梗概集, 929-930.
4. 吉野正敏,小氣候,大明堂株式會社,日本,1976。
5. 風工学研究所,新・ビル風の知識,鹿島出版会,日本,1992。
(三)英文文獻
1. ANSYS FLUENT 12.1 in Workbench User’s Guide, 2009.
2. Atkinson B. J., (1985). UPDATE: The urban atmosphere. Cambridge Univ. Press Cambridge.
3. Baik, J.-J., Park, R.-S., Chun, H.-Y., Kim, J.-J., (2000). A laboratory model of urban street-canyon flows. Journal of Applied Meteorology 39, 1592-1600.
4. Baskaran A, Kashef A.,(1996),「Investigation of air flow around buildings using computational fluid dynamics techniques,Engineering Structures」,Engineering Structures,Vol.18. No.11. pp.861-875.
5. Chang, W. R., (2006). Effect of porous hedge on cross ventilation of a residential building. Building and environment, 41(5), 549-556.
6. Colvile, R.N., Hutchinson, E.J., Mindell, J.S., Warren, R.F., (2001). The transport sector as a source of air pollution. Atmospheric Environment 35, 1537–1565.
7. DePaul, F.T., Sheih, C.M., (1986). Measurements of wind velocities in a street canyon. Atmospheric Environment 20, 455-459.
8. Etheridge D., Sandberg M., (1996). Building ventilation: Theory and measurement, John Wiley & Sons, England.
9. Fenger, J., (1999). Urban air quality. Atmospheric Environment. 33, 4877-4900.
10. Givoni B., (1998). Climate Considerations in Building and Urban Design. USA: International Thomson Publishing, Inc.
11. Gromke, C., Buccolieri, R., Di Sabatino, S., & Ruck, B., (2008). Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations–evaluation of CFD data with experimental data.Atmospheric Environment, 42(37), 8640-8650.
12. Hoek, G., Brunekreef, B., Verhoeff, A., van Wijnen, J., Fischer, P., (2000). Dailymortalityand air pollution in the Netherlands. Journal of the Air and Waste Management Association 50, 1380-1389.
13. Kim, J. J., Baik, J. J., (1999). A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons. Journal of Applied Meteorology 38, 1249-1261.
14. Kim, J. J., Baik, J. J., (2001). Urban street-canyon flows with bottom heating. Atmospheric Environment 35, 3395-3404.
15. Kim, J. J., & Baik, J. J., (2004). A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–ε turbulence model. Atmospheric Environment, 38(19), 3039-3048.
16. Landsberg, H. E., (1981). The urban climate. Academic Press, New York.
17. Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering, 3(2), 269-289.
18. Lee, I.Y., Park, H.M., (1994). Parameterization of the pollutant transport and dispersion in urban street canyons. Atmosphere Environment 28, 2343-2349.
19. Leitl, B. M., Kastner-Klein P. , Rau M. , Meroney R. N., (1997). Concentration and flow distributions in the vicinity of U-shaped buildings: Wind-tunnel and computational data, Journal of Wind Engineering and Industrial Aerodynamics, 67–68, 745-755.
20. Li, W., Wang, F., Bell, S., (2007). Simulating the sheltering effects of windbreaks in urban outdoor open space. Journal of wind engineering and industrial aerodynamics, 95(7), 533-549.
21. Ishida Y., Kato S., Huang H., Ooka R., (2005). Study on wind environment in urban blocks by CFD analysis wind velocity over street. Institute of industrial science, University of Tokyo, Japan.
22. Meroney, R.N., Pavageau, M., Rafailidis, S., Schatzmann, M., (1996). Study of line source characteristics for 2-D physical modeling of pollutant dispersion in street canyon. Journal of Wind Engineering and Industrial Aerodynamics 62, 37-56.
23. Mirzaei, P. A., Haghighat, F., (2010). A novel approach to enhance outdoor air quality: Pedestrian ventilation system. Building and Environment, 45(7), 1582-1593.
24. Moonen P., Dorer V., Carmeliet J., (2011). Evaluation of the ventilation potential of courtyards and urban street canyons using RANS and LES, Journal of Wind Engineering and Industrial Aerodynamics, (99)4, 414-423.
25. Nakamura, Y., Oke, T.R., (1988). Wind, temperature, and stability conditions in an east–west oriented urban canyon. Atmospheric Environment 22, 2691-2700.
26. Nyberg, F., Gustavsson, P., J.arup, L., Bellander, T., Berglind, N., Jakobsson, R., Pershagen, G., (2000). Urban air pollution and lung cancer in Stockholm. Epidemiology 11(5), 487-495.
27. Oguro, M., Morikawa, Y., Murakami, S., Matsunawa, K., Mochida, A., Hayashi, H., (2006). Development of a Wind Environment Database in Tokyo for a Comprehensive Assessment System for Heat Island Relaxation Measures. JWE: 日本風工学研究会誌, (108), 113-116.
28. Oke, T. R., (1995). The heat island of the urban boundary layer: characteristics, causes and effects. NATO ASI Series E Applied Sciences-Advanced Study Institute, 277, 81-108.
29. Rotach, M.W., (1995). Profiles of turbulence statistics in and above an urban street canyon. Atmospheric Environment 29, 1473-1486.
30. Shashua-Bar, L., Hoffman, M. E., (2004). Quantitative evaluation of passive cooling of the UCL microclimate in hot regions in summer, case study: urban streets and courtyards with trees. Building and Environment, 39(9), 1087-1099.
31. Uehara, K., Murakami, S., Oikawa, S., Wakamatsu, S., (2000). Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmospheric Environment 34, 1553-1562.
32. Vardoulakis, S., Fisher, B. E., Pericleous, K., Gonzalez-Flesca, N., (2003). Modelling air quality in street canyons: a review. Atmospheric environment, 37(2), 155-182.
33. WHO, (2000). Air qualityguidelines for Europe. Copenhagen, Denmark.
34. Xie X., Huang Z., Wang J., (2006). The impact of urban street layout on local atmospheric environment. Building and Environment, 41(10), 1352-1363.
35. Yim, S. H. L., Fung, J. C. H., Lau, A. K. H., Kot, S. C., (2009). Air ventilation impacts of the “wall effect” resulting from the alignment of high-rise buildings. Atmospheric environment, 43(32), 4982-4994.
36. Yuan, C., Ng, E., (2012). Building porosity for better urban ventilation in high-density cities–A computational parametric study. Building and Environment, 50, 176-189.