簡易檢索 / 詳目顯示

研究生: 蔡在宗
Tsai, Tsai-Tsung
論文名稱: 大規模崩塌促崩雨量之研究:由衛星影像分析、統計分析、到預警應用
The Triggering Rainfall Characteristics of Large-Scale Landslide: from Satellite Imagery Analysis, Statistical Analysis, to Early Warning Applications
指導教授: 謝正倫
Shieh, Chjeng-Lun
共同指導教授: 饒見有
Rau, Jiann-Yeou
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 104
中文關鍵詞: 大規模崩塌促崩雨量線性迴歸非線性迴歸預警作業不確定性
外文關鍵詞: large-scale landslide, triggering rainfall, linear regression, nonlinear regression, early warning, uncertainty
ORCID: 0000-0003-1422-7372
ResearchGate: https://www.researchgate.net/profile/Tsai-Tsung-Tsai
相關次數: 點閱:89下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2009年8月颱風莫拉克對臺灣造成嚴重影響,特別是大規模崩塌災害,雖然數量比例不高,但是造成的影響卻極為嚴重,為了瞭解這種災害進而降低其衝擊,因而開始了本研究。
    為了確立大規模崩塌與促崩雨量之間所存在之特定關係,進而應用於大規模崩塌預警作業,本研究收集了2004年至2016年間衛星圖像相關案例以及野外調查數據、重大事件報告和台灣寬頻地震網觀測資料。
    本研究以「崩塌面積超過10公頃或崩塌土方量達10萬立方公尺以上或崩塌深度在10公尺以上的崩塌地」之大規模崩塌定義進行篩選,最終選定107個案例(28處確定發生時間案例、79處未能確認確切發生時間案例)與149處大規模崩塌潛勢區進行分析探討。
    透過安全係數概念,本研究嘗試將相關因子變量維度降低,最終將分析因子限縮於促崩雨量R、崩塌厚度D、等價摩擦角ϕ與滑動面角度θ四個因子,進行統計回歸分析。
    進行線性迴歸分析作業時,依據極限平衡法概念,將前述四個因子再行降維,以兩個無因次參數R/D、ϕ/θ進行分析;進行非線性迴歸分析作業時,則假定存在D為應變數其他三因子為自變數之非線性關係,透過拔靴法重採樣執行非線性回歸以評估參數不確定性。
    根據獲得數據,線性回歸分析結果存在8%型一錯誤,非線性回歸分析結果存在1%型二錯誤。 通過統計指標比較,非線性回歸分析具有結果具有較好預測能力。
    基於預警操作需要,較保守指標可以降低管理操作面臨之風險。因此,根據本研究結果,建議應考慮以線性或非線性分析下邊界線作為LSL臨界值。結合實時降雨預報,統計指標變化將動態提供趨勢信息,有助於增加相關疏散行動應變時間。

    Typhoon Morakot brought Taiwan a serious impact those people in Taiwan was startled that we know nothing about this kind of phenomenon. In order to reduce the risk of large-scale landslide, people should do something for it. That is the origin of this study. This study focused on establishing a specific relationship between triggering rainfall and large-scale landslide to make people know more of it and applied the result of this study on early warning works.

    This study did the literature review first for better understanding the past studies. After grabbed the key issues, this study collected case data during 2004 to 2016 then screened the target study cases as the preparedness. Based on the concept of safety factor, this study reduced the dimension of related factors, and focused on 4 factors, R, D, ϕ, and θ, this study practiced on both linear regression analysis and nonlinear regression analysis to establish the relationships between 4 factors. Both linear and nonlinear relationships were validated by the 3 groups of data.

    8% Type-I errors and 1% Type-II errors were found in linear and nonlinear regression respectively, nonlinear regression had better predictive ability was proved comparison of statistical results. The management value of evacuation should be setup 3 to 6 hrs. before the cumulative rainfall value reaches the critical line. Although the model verified the rationality, it does not mean this model could be used directly in another region outside Taiwan. Those cases want to apply this model should be the newborn cases.

    摘要 I 誌謝 XV 目錄 XVII 表目錄 XIX 圖目錄 XXI 符號 XXIII 第一章、緒論 1 1-1前言 1 1-2背景與目的 2 1-3論文架構 5 第二章、文獻回顧 9 2-1發生機制相關研究 9 2-2監測相關研究 11 2-3預警相關研究 17 第三章、研究方法 19 3-1分析因子選定 20 3-2大規模崩塌案例收集與篩選 23 3-3大規模崩塌案例確認與基本地文資料提取 25 3-4大規模崩塌發生時間確認 29 3-5大規模崩塌促崩雨量分析 32 3-6線性迴歸分析 36 3-7非線性迴歸分析 39 第四章、研究成果 47 4-1線性迴歸分析成果 47 4-2非線性迴歸分析成果 52 第五章、成果討論 61 5-1預測能力 61 5-2成果使用限制 72 5-3預警應用 73 第六章、結論與建議 75 6-1研究結論 75 6-2研究建議 77 參考文獻 79 附錄 85 附錄一、28處確定發生時間案例資料 87 附錄二、79處未能確認確切發生時間案例資料 89 附錄三、水土保持局劃定之149處大規模崩塌潛勢區資料 93 附錄四、最佳化參數求解模式(VBA程式碼) 99

    1. Baum, R. L., Savage, W. Z., & Godt, J. W. TRIGRS—a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. Virginia, USA: US Geological Survey,(2002).
    2. Booth, A. M., Roering, J. J., & Perron, J. T. Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology, 109(3-4), 132-147. (2009).
    3. Brinkgreve, R. B. J. Plaxis finite element code for soil and rock analyses: 2D - Version 8. Balkema Rotterdam. (2002).
    4. Caviedes-Voullième, D., Juez, C., Murillo, J., & García-Navarro, P. 2D dry granular free-surface flow over complex topography with obstacles. Part I: experimental study using a consumer-grade RGB-D sensor. Computers & Geosciences, 73, 177-197. (2014).
    5. Chae, B.-G., Choi, J., & Seo, Y.-S. Suggestion of a landslide early warning method using a gradient of volumetric water content. In Landslide Science for a Safer Geoenvironment (pp. 545-550). Springer. (2014).
    6. Champenois, J., Fruneau, B., Pathier, E., Deffontaines, B., Lin, K.-C., & Hu, J.-C. Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan) using Persistent Scatterer InSAR method with ALOS PALSAR data. Earth and Planetary Science Letters, 337, 144-155. (2012).
    7. Chen, R.-F., Lee, C.-Y., Yin, H.-Y., Huang, H.-Y., Cheng, K.-P., & Lin, C.-W. Monitoring the deep-seated landslides by using ALOS/PALSAR satellite imagery in the disaster area of 2009 Typhoon Morakot, Taiwan. In M. Mikoš, Ž. Arbanas, Y. Yin, & K. Sassa, Advancing Culture of Living with Landslides Cham. (2017).
    8. Corominas, J. The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33(2), 260-271. (1996).
    9. Coulomb C, A. Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs a l'architecture. Mem. acad. roy. pres divers savants, 7. https://cir.nii.ac.jp/crid/1571980074469988352 (1776).
    10. Coveney, S., Fotheringham, A. S., Charlton, M., & McCarthy, T. Dual-scale validation of a medium-resolution coastal DEM with terrestrial LiDAR DSM and GPS. Computers & Geosciences, 36(4), 489-499. (2010).
    11. Crozier, M. J. Landslides: Causes, Consequences & Environment. Croom Helm. (1986).
    12. Culmann, K. Die graphische statik (Vol. 1). Meyer & Zeller (A. Reimann). (1875).
    13. DelBene, S. K., Kilmer, D., Heck, D., Smith, A., Cartwright, M., Bonamici, S., & Cohen, S. National Landslide Preparedness Act. (Public Law 116-323). USA: the U.S. Government Publishing Office, Retrieved from https://www.congress.gov/bill/116th-congress/house-bill/8810 (2021).
    14. Dewitte, O., Jasselette, J.-C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., & Demoulin, A. Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LiDAR approach in western Belgium. Engineering Geology, 99(1-2), 11-22. (2008).
    15. Duncan, J. M., Wright, S. G., & Brandon, T. L. Soil strength and slope stability. John Wiley & Sons. (2014).
    16. Efron, B. Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1), 1-26. (1979).
    17. FRONTLINE SYSTEMS. EXCEL SOLVER - GRG NONLINEAR SOLVING METHOD STOPPING CONDITIONS. FRONTLINE SYSTEMS,. Retrieved 22 March 2022 from https://www.solver.com/excel-solver-grg-nonlinear-solving-method-stopping-conditions (2022).
    18. Gian, Q. A., Tran, D.-T., Nguyen, D. C., Nhu, V. H., & Tien Bui, D. Design and implementation of site-specific rainfall-induced landslide early warning and monitoring system: a case study at Nam Dan landslide (Vietnam). Geomatics, Natural Hazards and Risk, 8(2), 1978-1996. (2017).
    19. Greif, V., & Vlcko, J. Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environmental Earth Sciences, 66(6), 1585-1595. https://doi.org/10.1007/s12665-011-0951-x (2011).
    20. Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., & Valigi, D. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3), 222-229. https://doi.org/https://doi.org/10.1016/j.epsl.2009.01.005 (2009).
    21. Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and atmospheric physics, 98(3), 239-267. (2007).
    22. Hölbling, D., Betts, H., Spiekermann, R., & Phillips, C. Identifying spatio-temporal landslide hotspots on North Island, New Zealand, by analyzing historical and recent aerial photography. Geosciences, 6(48), 1-15. (2016).
    23. Hu, W., Xie, J., Chau, H. W., & Si, B. C. Evaluation of parameter uncertainties in nonlinear regression using Microsoft Excel Spreadsheet. Environmental Systems Research, 4(1), 1-12. https://doi.org/10.1186/s40068-015-0031-4 (2015).
    24. Hung, W.-C., Hwang, C., Chen, Y.-A., Chang, C.-P., Yen, J.-Y., Hooper, A., & Yang, C.-Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: a case study over the Choushui River alluvial fan, Taiwan. Remote Sensing of Environment, 115(4), 957-967. https://doi.org/10.1016/j.rse.2010.11.007 (2011).
    25. Itasca Consulting Group, I. FLAC. Itasca Consulting Group, Inc. Retrieved 27th May from https://www.itascacg.com/software/FLAC (1986).
    26. Itasca Consulting Group, I. PFC. ITASCA. Retrieved 27th May from https://www.itascacg.com/software/PFC (1994).
    27. Jaboyedoff, M., Carrea, D., Derron, M.-H., Oppikofer, T., Penna, I. M., & Rudaz, B. A review of methods used to estimate initial landslide failure surface depths and volumes. Engineering Geology, 267, 105478. https://doi.org/https://doi.org/10.1016/j.enggeo.2020.105478 (2020).
    28. Jackson, L., Bobrowsky, P., & Bichler, A. Identification, maps and mapping Canadian technical guidelines and best practices related to landslides: a national initiative for loss reduction. Canada: Geological Survery of Canada,.(2012).
    29. Juez, C., Caviedes-Voullième, D., Murillo, J., & García-Navarro, P. 2D dry granular free-surface transient flow over complex topography with obstacles. Part II: Numerical predictions of fluid structures and benchmarking. Computers & Geosciences, 73, 142-163. (2014).
    30. Kalatehjari, R., & Ali, N. A review of three-dimensional slope stability analyses based on limit equilibrium method. Electronic Journal of Geotechnical Engineering, 18, 119-134. (2013).
    31. Kambara, J., & Uchida, T. Technical guideline for countermeasures against deep-seated catastrophic (rapid) landslide. (No.807). JAPAN: National Institute for Land and Infrastructure Management,. Retrieved from http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0807.htm (2014).
    32. Kimura, T., & Yokoyama, N. Monitoring of landslide movement and forecasting of slope failure occurrence. Journal of the Japan Landslide Society, 43(3), 172-179. https://ci.nii.ac.jp/naid/10020356791/en/ (2006).
    33. Kuo, H.-L., Lin, G.-W., Chen, C.-W., Saito, H., Lin, C.-W., Chen, H., & Chao, W.-A. Evaluating critical rainfall conditions for large-scale landslides by detecting event times from seismic records. Natural Hazards and Earth System Sciences, 18(11), 2877-2891. (2018).
    34. Lahousse, T., Chang, K., Lin, Y., & Günther, A. Landslide mapping with multi-scale object-based image analysis--a case study in the Baichi watershed, Taiwan. Natural Hazards & Earth System Sciences, 11(10), 2715-2726. (2011).
    35. Lee, C.-F., Lo, C.-M., Chou, H.-T., & Chi, S.-Y. Landscape evolution analysis of large scale landslides at Don-Ao Peak, Taiwan. Environmental Earth Sciences, 75(29), 1-19. (2016).
    36. Lin, M.-L., Chen, T.-W., Lin, C.-W., Ho, D.-J., Cheng, K.-P., Yin, H.-Y., & Chen, M.-C. Detecting large-scale landslides using LiDAR data and aerial photos in the Namasha-Liuoguey area, Taiwan. Remote Sensing, 6(1), 42-63. (2014).
    37. Lin, M.-L., Chen, Y.-C., Tseng, Y.-H., Chang, K.-J., & Wang, K.-L. Investigation of geological structures using UAV LiDAR and its effects on the failure mechanism of deep-seated landslide in Lantai Area, Taiwan. Applied Sciences, 11(10052), 1-19. https://www.mdpi.com/2076-3417/11/21/10052 (2021).
    38. Lo, C.-M. Evolution of deep-seated landslide at Putanpunas stream, Taiwan. Geomatics, Natural Hazards and Risk, 8(2), 1204-1224. https://doi.org/10.1080/19475705.2017.1309462 (2017).
    39. Lu, N. G., Jonathan W. Hillslope hydrology and stability. Cambridge University Press. (2013).
    40. Lu, P., Casagli, N., Catani, F., & Tofani, V. Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. International Journal of Remote Sensing, 33(2), 466-489. https://doi.org/10.1080/01431161.2010.536185 (2011).
    41. Martelloni, G., Segoni, S., Fanti, R., & Catani, F. Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides, 9(4), 485-495. (2012).
    42. MCDOUGALL, S., MCKINNON, M., & HUNGR, O. 16 Developments in landslide runout prediction. Landslides: types, mechanisms and modeling, 187-195. (2012).
    43. Miyamoto, K. Two dimensional numerical simulation of landslide mass movement. Journal of Erosion Control Engineering, 55(2), 5-13. (2002).
    44. National System for Environmental Protection. Linee guida per il monitoraggio delle frane. National System for Environmental Protection. (2021).
    45. Newmark, N. M. Effects of earthquakes on dams and embankments. Géotechnique, 15(2), 139-160. (1975).
    46. Nicoletti, P. G., & Sorriso-Valvo, M. Geomorphic controls of the shape and mobility of rock avalanches. Geological Society of America Bulletin, 103(10), 1365-1373. (1991).
    47. Pack, R. T., Tarboton, D. G., Goodwin, C., & Prasad, A. SINMAP 2.0-a stability index approach to terrain stability hazard mapping, user's manual. Retrieved 15th September from https://digitalcommons.usu.edu/cee_facpub/16/ (1999).
    48. Scheidegger, A. E. On the prediction of the reach and velocity of catastrophic landslides. Rock mechanics, 5(4), 231-236. (1973).
    49. Shieh, C.-L., Wang, C.-M., Chen, Y.-S., Tsai, Y.-J., & Tseng, W.-H. An overview of disasters resulted from Typhoon Morakot in Taiwan. Journal of Disaster Research, 5(3), 236-244. (2010).
    50. Singh, K., & Xie, M. Bootstrap: a statistical method. http://www. stat. rutgers. edu/home/mxie/RCPapers/bootstrap. pdf (2008).
    51. Su, M.-B., Chen, I.-H., & Liao, C.-H. Using TDR cables and GPS for landslide monitoring in high mountain area. Journal of Geotechnical and Geoenvironmental Engineering, 135(8), 1113-1121. (2009).
    52. Terzaghi, K., & Paige, S. Mechanism of Landslides. In Application of Geology to Engineering Practice. Geological Society of America. https://doi.org/10.1130/Berkey.1950.83 (1950).
    53. Tianchi, L. A mathematical model for predicting the extent of a major rockfall. Zeitschrift für Geomorphologie, 27(4), 473-482. (1983).
    54. Towhata, I., Goto, S., Goto, S., Akima, T., Tanaka, J., Uchimura, T., Wang, G., Yamaguchi, H., & Aoyama, S. Mechanism and future risk of slope instability induced by extreme rainfall event in Izu Oshima Island, Japan. Natural Hazards, 105(1), 501-530. https://doi.org/10.1007/s11069-020-04321-0 (2021).
    55. Tsai, T.-T., Li, C.-C., Tsai, H.-C., Lin, Y.-F., Chiu, T.-w., & Lin, C.-W. An analysis of slopeland disasters with Formosat-2 imagery. Taiwan: Central Geological Survey, Retrieved from https://www.grb.gov.tw/search/planDetail?id=2156684 (2010).
    56. Tsai, T.-T., Tsai, Y.-J., & Shieh, C.-L. Critical rainfall analysis of large-scale landslide occurrence Proceedings of the Interpraenent, Toyama, Japan. (2018, 1-4 Oct.).
    57. Tsai, W.-N., Chen, C.-C., Chiang, C.-W., Chen, P.-Y., Kuo, C.-Y., Wang, K.-L., Lin, M.-L., & Chen, R.-F. Electrical Resistivity Tomography (ERT) monitoring for landslides: case study in the Lantai Area, Yilan Taiping Mountain, Northeast Taiwan [Original Research]. Frontiers in Earth Science, 9, 1-17. https://doi.org/10.3389/feart.2021.737271 (2021).
    58. Tsai, Y.-J., Syu, F.-T., Shieh, C.-L., Chung, C.-R., Lin, S.-S., & Yin, H.-Y. Framework of emergency response system for potential large-scale landslide in Taiwan. Water, 13(5), 712. https://www.mdpi.com/2073-4441/13/5/712 (2021).
    59. Tseng, C.-M., Lin, C.-W., Stark, C. P., Liu, J.-K., Fei, L.-Y., & Hsieh, Y.-C. Application of a multi-temporal, LiDAR-derived, digital terrain model in a landslide-volume estimation. Earth Surface Processes and Landforms, 38(13), 1587-1601. https://doi.org/https://doi.org/10.1002/esp.3454 (2013).
    60. Tung, H., & Hu, J.-C. Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126-135. https://doi.org/10.1016/j.tecto.2012.08.009 (2012).
    61. U.S. Geological Survey. Scoops3D. U.S. Geological Survey. Retrieved 27th May from https://www.usgs.gov/software/scoops3d (2015).
    62. Varnes, D. J. Slope movement types and processes. Special report, 176, 11-33. (1978).
    63. Ventura, G., Vilardo, G., Terranova, C., & Sessa, E. B. Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy). Remote Sensing of Environment, 115(12), 3237-3248. (2011).
    64. Wang, K.-L., Lin, J.-T., Lee, Y.-H., & Chen, T.-W. Study on research on simulation of shallowcollapse behavior with particle flow – case study of Hongye landslide, Taiwan XIII International Symposium on Landslides, Cartagena, Colombia. (2020, 15-19 JUNE).
    65. Wang, K.-L., & Lin, M.-L. Initiation and displacement of landslide induced by earthquake - a study of shaking table model slope test. Engineering Geology, 122(1-2), 106-114. https://doi.org/10.1016/j.enggeo.2011.04.008 (2011).
    66. Wieczorek, G. F. Landslides: investigation and mitigation. Chapter 4-Landslide triggering mechanisms. Transportation research board special report(247). (1996).
    67. William E. Dietrich, D. R. M., . SHALSTAB. University of California, Berkeley,. Retrieved 15th March from http://calm.geo.berkeley.edu/geomorph/shalstab/index.htm (1998).
    68. Wilson, R. C., & Keefer, D. K. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bulletin of the Seismological Society of America, 73(3), 863-877. (1983).
    69. Zêzere, J. L., Trigo, R. M., & Trigo, I. F. Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Natural Hazards and Earth System Sciences, 5(3), 331-344. (2005).
    70. Zhao, C., Lu, Z., Zhang, Q., & de la Fuente, J. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sensing of Environment, 124, 348-359. https://doi.org/10.1016/j.rse.2012.05.025 (2012).
    71. 小林村平埔族群文物館. 關於小林—八八風災. 小林村平埔族群文物館. Retrieved 2022/03/08 from https://xiaolin.khcc.gov.tw/index.php?option=module&lang=cht&task=pageinfo&id=4&index=1 (2022).
    72. 中央氣象局. 颱風資料庫. 中央氣象局. Retrieved 2022/03/07 from https://rdc28.cwb.gov.tw/TDB/public/typhoon_detail?typhoon_id=200908 (2009).
    73. 中央氣象局. 地震百問. 中央氣象局. Retrieved 2022/10/25 from https://scweb.cwb.gov.tw/zh-tw/guidance/faq (2018a).
    74. 中央氣象局. 災害地震. 中央氣象局. Retrieved 2022/10/25 from https://scweb.cwb.gov.tw/zh-tw/page/disaster (2018b).
    75. 中央氣象局. Broadband array in Taiwan for seismology, BATS. Central Weather Bureau. Retrieved 18th May from https://gdms.cwb.gov.tw/gdms-broad.php (2022a).
    76. 中央氣象局. 自動雨量站-雨量觀測資料. 中央氣象局. Retrieved 16 December 2022 from https://opendata.cwb.gov.tw/dataset/observation/O-A0002-001 (2022b).
    77. 中央氣象局. 颱風百問. 中央氣象局. Retrieved 2022/10/25 from https://www.cwb.gov.tw/V8/C/K/Encyclopedia/typhoon/index.html (2022c).
    78. 中興工程顧問社. 強化豪雨引致山崩之即時動態 潛勢評估與警戒模式發展. 臺北,臺灣: 中央地質調查所 Retrieved from https://www.grb.gov.tw/search/planDetail?id=2884377 (2013).
    79. 水土保持局. 大規模崩塌防減災技術發展與應用. 南投,臺灣: 水土保持局(2015).
    80. 水土保持局. 氣候變遷下大規模崩塌防減災計畫(變更). 南投,臺灣: 水土保持局 Retrieved from https://www.swcb.gov.tw/Home/About/book_more?id=711c2644cd374c698c8545a61af364b7 (2020).
    81. 水土保持局. 水土保持技術手冊:土石流篇 [水土保持手冊-土石流篇]. In 水土保持局 (Ed.). 水土保持局. (2021).
    82. 水土保持局. 大規模崩塌警戒發布. 水土保持局. Retrieved 22 March 2022 from https://246.swcb.gov.tw/Landslide/Landslide_Release#unit2 (2022a).
    83. 水土保持局. 重大災害事件. 水土保持局. Retrieved 22 March 2022 from https://246.swcb.gov.tw/Achievement/MajorDisasters (2022b).
    84. 王文能. 崩塌的地質特性與防災. 中華防災學會出版委員會. (2016).
    85. 王金山, 鍾明劍, & 冀樹勇. 降雨誘發崩塌地滑動之監測回饋分析與預警應用探討. 中興工程季刊(110), 27-40. https://doi.org/doi:10.30154/SE.201101.0004 (2011).
    86. 王國隆, 林俊廷, 吳建羣, 陳建帆, 邱亭瑋, & 謝旻希. 山坡地變形潛勢分級研究 ⎯ 以台北市內湖區為例 [Study on sliding displacement classification of slope land -an example of neihu district, taipei city]. 中國土木水利工程學刊, 33(2), 139-149. https://doi.org/10.6652/JoCICHE.202104_33(2).0006 (2021).
    87. 王國隆, 林俊廷, 張峻瑋, 林妍琇, 洪志祥, 洪政義, 邱啟芳, & 傅桂霖. 結合高精度無人載具測量及差分干涉合成孔徑雷達與NDSI 分析於土砂量體的評估方法. 農業工程學報, 65(4), 26-39. (2019).
    88. 李威霖. 入滲過程中孔隙水壓變化及其對邊坡穩定影響之研究 [博士論文, 國立成功大學]. 臺南,臺灣. (2020).
    89. 周鋒泯. 應用永久散射體差分干涉法觀測台灣北部地區之地表變形 [碩士論文, 國立中央大學]. 桃園,臺灣. (2009).
    90. 林冠瑋. 台灣地震網應用於大規模崩塌偵測及崩塌發生之降雨條件分析. https://www.grb.gov.tw/search/planDetail?id=11938629 (2015).
    91. 林德貴, 張國欽, & 蘇苗彬. 颱風降雨期間梨山地滑區邊坡穩定性之數值評估. 中華水土保持學報, 39(1), 57-81. (2008).
    92. 張志新. 大規模崩塌災害防治行動綱領. (9789860447453). 臺北市,臺灣: 國家災害防救科技中心 Retrieved from https://books.google.com.tw/books?id=X7qHjwEACAAJ (2015).
    93. 陳淑惠, 張靜貞, 李欣輯, 楊惠萱, 鄧傳忠, 李香潔, 郭彥廉, & 李洋寧. 莫拉克颱風社會衝擊與復原調查(第一期). (NCDR 99-T03). 臺北市,臺灣: 國家災害防救科技中心 Retrieved from https://www.ncdr.nat.gov.tw/Writing (2011).
    94. 黃婷卉. 土石流發生降雨特性之研究-以陳有蘭溪流域為主 [碩士論文, 國立成功大學]. 臺南,臺灣. (2002).
    95. 經濟部水利署. 中華民國一一0年臺灣水文年報. 經濟部水利署. https://gweb.wra.gov.tw/wrhygis/ebooks/ebook/ebook/hyb2021/default.htm (2022).
    96. 詹錢登. 土石流防災降雨警戒 [土石流防災降雨警戒]. 中興工程科技硏究發展基金會. https://www.sinotecf.org.tw/page/ebook/show.aspx?num=13&page=2 (2016).
    97. 詹錢登, & 李明熹. 土石流發生降雨警戒模式. 中華水土保持學報, 35(3), 275-285. (2004).
    98. 廖瑞堂, 陳昭維, 紀宗吉, & 林錫宏. 由台灣監測案例探討邊坡位移量之管理值. 地工技術, 136, 59-70. (2013).
    99. 蔡在宗. 福爾摩沙衛星二號在防救災應用上之回顧. 國研科技(23), 53-60. https://doi.org/10.29659/narlq.200908.0008 (2009).
    100. 鄧屬予. 板塊間看台灣地震. 科學發展月刊, 350, 12-19. https://ejournal.stpi.narl.org.tw/sd/view?vlId=01FDD192-6F20-4BE1-82C6-83066930BED7 (2002).
    101. 盧志恆. 應用永久散射體差分干涉法探討花蓮市區的斷層活動與地表變形 [碩士論文, 臺北市立教育大學]. 臺北,臺灣. https://hdl.handle.net/11296/ny496n (2009).
    102. 蕭逸凡. 永久散射體雷達干涉技術應用於地表變遷偵測 [碩士論文, 國立中央大學]. 桃園,臺灣. (2010).
    103. 謝正倫, 陸源忠, 游保杉, & 陳禮仁. 土石流發生臨界降雨線設定方法之研究. 中華水土保持學報, 26(3), 167-172. (1995).
    104. 蘇柏宗. 具多餘觀測的永久散射體雷達干涉測量法 [碩士論文, 國立成功大學]. 臺南,臺灣. (2012).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE