簡易檢索 / 詳目顯示

研究生: 李冠廷
Lee, Guan-Ting
論文名稱: 考量磁飽和效應之永磁同步馬達轉矩漣波抑制驅動技術
Development of Drive Technique for Torque Ripple Reduction of Permanent Magnet Synchronous Motor Considering Magnetic Saturation
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 95
中文關鍵詞: 永磁同步馬達磁飽和轉矩漣波比例積分諧振控制器
外文關鍵詞: permanent magnet synchronous motor (PMSM), magnetic saturation, torque ripple, roportional-integral-resonant (PIR) controller
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對受磁飽和效應影響的永磁同步馬達轉矩漣波進行抑制,以改善其高負載下高轉矩漣波的缺點。藉由分析參數變動的馬達轉矩漣波,推導出抑制漣波的補償電流公式,公式之參數皆由馬達轉矩漣波波形計算,避免馬達磁飽和時參數難以取得的問題,並設計比例積分諧振控制器,以輸出高頻諧波補償電流抑制轉矩漣波。
      文中利用ANSYS-Maxwell有限元素分析,得到馬達在各負載下之轉矩漣波波形,進行快速傅立葉變換,以計算上述補償電流公式,再輸入至ANSYS-Maxwell驗證補償電流的效果。驅動法的驗證則利用MATLAB Simulink結合馬達等效電路模型,模擬驅動電路及馬達表現,以驗證比例積分諧振控制器追蹤諧波電流命令的能力。本論文亦以完整的驅動電路、扭矩計量測與計算補償電流,並注入補償電流到目標馬達,以實驗驗證補償效果。

    In this thesis, the torque ripple of the permanent magnet synchronous motor affected by the magnetic saturation effect is suppressed to improve the disadvantage of high torque ripple under high load. By analyzing the motor torque ripple caused by the change of parameters, the compensation current formula for suppressing the ripple is derived. The parameters of the formula are all calculated from the torque ripple waveform of the motor to avoid the problem that the parameters are difficult to obtain when the motor is under magnetic saturation, and a proportional-integral-resonance controller is designed to output high-frequency harmonic compensation current to suppress torque ripple.
      In this thesis, the torque ripple waveform of the motor under each load is obtained via the finite element analysis of ANSYS-Maxwell, then output to Excel for a fast Fourier transform to calculate the above compensation current formula, and input to ANSYS-Maxwell to verify the effect of the compensation current. The verification of the drive method uses MATLAB Simulink combined with the motor equivalent circuit model to simulate the drive circuit and motor performance to verify the ability of the proportional-integral-resonant controller to track the harmonic current command. In this thesis, the compensation current is measured and calculated with a complete drive circuit and a torque sensor, and the compensation current is injected into the target motor to verify the compensation effect by experiments.

    摘要 I 目錄 XIX 表目錄 XXII 圖目錄 XXIII 符號表 XXVIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 5 1.3 研究目的 12 1.4 論文架構 14 第二章 永磁同步馬達驅動與控制原理 15 2.1 永磁同步馬達數學模型 15 2.1.1 三相座標系統之馬達數學模型 15 2.1.2 座標軸轉換 18 2.1.3 旋轉座標軸之馬達數學模型 21 2.2 永磁同步馬達驅動法 25 2.2.1 磁場導向控制法 26 2.3 永磁同步馬達動態模型 29 2.3.1 動態模型解耦合 30 2.4 控制器設計 32 2.4.1 電流迴路控制器設計 32 2.4.2 轉速迴路控制器設計 33 第三章 考慮磁飽和效應之永磁同步馬達轉矩漣波抑制控制 35 3.1 轉矩漣波分析 35 3.2 考慮磁飽和效應之轉矩公式 37 3.3 補償電流推導 39 3.4 比例-積分-諧振控制器 42 3.4.1 諧振控制器的數位實現 44 3.4.2 諧振控制器的參數設計 51 3.5 小結 55 第四章 系統架構及模擬結果分析 56 4.1 補償電流之模擬驗證 56 4.2 系統架構與模擬方法 61 4.2.1 新磁場導向控制架構 61 4.2.2 馬達等效電路抽取 62 4.3 模擬結果分析 63 第五章 實驗結果 72 5.1 實驗設備 72 5.2 實驗流程 76 5.3 補償電流波形 77 5.4 實驗結果分析 79 第六章 結論與未來展望 87 6.1 結論 87 6.2 未來展望 89 參考文獻 90

    [1] 陳威佐,基於電流變化觀察法之無位置偵測永磁同步馬達驅動器,國立成功大學電機工程學系碩士論文,2020。
    [2] D. Wu, Z. Q. Zhu and W. Q. Chu, "On-load performance of fractional slot SPM machines considering tooth-tip local magnetic saturation," in Proceedings of 2016 22nd International Conference on Electrical Machines (ICEM), 2016, pp. 506-512.
    [3] Á. Bakos and A. Soumelidis, “A method for torque-ripple compensation in non-ideal permanent magnet machines,” in Proceedings of 2012 20th Mediterranean Conference on Control & Automation (MED), 2012, pp. 1474-1478.
    [4] F. Libert and J. Soulard, “Investigation on pole-slot combinations for permanent-magnet machines with concentrated windings,” in Proceedings of 2004 16th International Conference on Electrical Machines (ICEM), pp. 5-8, Sep. 2004.
    [5] T. Su, S. Hattori and M. Ishida, “Suppression control method for torque vibration of AC motor utilizing repetitive controller with fourier transform,” IEEE Transactions on Industry Applications, Vol.38, No.5, 1316- 1325, Sep./Oct. 2002.
    [6] H. Akatsuka, M. Hasegawa and S. Doki, "Examination of Magnetization Curve Model for Torque Ripple Reduction of IPMSMs to Compensate for Magnetic Characteristics," in Proceedings of 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), 2020, pp. 240-245.
    [7] Z. Azar, Z. Q. Zhu and G. Ombach, "Influence of Electric Loading and Magnetic Saturation on Cogging Torque, Back-EMF and Torque Ripple of PM Machines," IEEE Transactions on Magnetics, vol. 48, no. 10, pp. 2650-2658, Oct. 2012.
    [8] S. Kim, H. Lee, K. Kim, J. Bae, J. Im, C. Kim and J. Lee, "Torque Ripple Improvement for Interior Permanent Magnet Synchronous Motor Considering Parameters With Magnetic Saturation," IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4720-4723, Oct. 2009.
    [9] C. Lai, G. Feng and K. Mukherjee, V. Loukanov and N. C. Kar, "Torque Ripple Modeling and Minimization for Interior PMSM Considering Magnetic Saturation," IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2417-2429, Mar. 2018.
    [10] N. Nakao and K. Akatsu, "Suppressing Pulsating Torques: Torque Ripple Control for Synchronous Motors," IEEE Industry Applications Magazine, vol. 20, no. 6, pp. 33-44, Nov.-Dec. 2014.
    [11] 謝旻甫、余守龍。高效率永磁無刷馬達之設計與分析。電機月刊,No.221,P.140,2009年5月。
    [12] S. Zarate, G. Almandoz, G. Ugalde, J. Poza and A. J. Escalada, "Extended DQ model of a Permanent Magnet Synchronous Machine by including magnetic saturation and torque ripple effects," in Proceedings of 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), 2017, pp. 1-6.
    [13] A. Nasr, C. Gu, W. Zhao, S. Bozhko and C. Gerada, "Torque Ripple Suppression for IPMSM using FEA- based Model Predictive Direct Torque Control," in Proceedings of 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), 2021, pp. 204-209.
    [14] G. Lee, “Active Cancellation of PMSM Torque Ripple Caused by Magnetic Saturation for EPS Applications,” Journal of Power Electronics, vol. 10, no. 2, pp. 176–180, Mar. 2010.
    [15] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez and F. Blaabjerg, "Evaluation of Current Controllers for Distributed Power Generation Systems," IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 654-664, Mar. 2009.
    [16] R. Teodorescu, F. Blaabjerg, U. Borup and M. Liserre, "A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation," in Proceedings of 19th Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04., 2004, pp. 580-586 Vol.1.
    [17] S. Park, C. Chen, J. Lai and S. Moon, "Admittance Compensation in Current Loop Control for a Grid-Tie LCL Fuel Cell Inverter," IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1716-1723, Jul. 2008.
    [18] M. Liserre, R. Teodorescu and F. Blaabjerg, "Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values," IEEE Transactions on Power Electronics, vol. 21, no. 1, pp. 263-272, Jan. 2006.
    [19] Y. F. Hu, B. Liu, and J. Liu,"PFC Controller Based on Self-Adaptive Proportional-Resonant Control," Advanced Materials Research. Trans Tech Publications, Ltd, vols. 588–589, pp. 1533–1538, Nov. 2012.
    [20] H. Chuan, S. M. Fazeli, Z. Wu and R. Burke, "Mitigating the Torque Ripple in Electric Traction Using Proportional Integral Resonant Controller," IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 10820-10831, Oct. 2020.
    [21] O. V. Nos, D. A. Shtein, G. S. Leus, N. I. Nos, E. E. Abramushkina and E. A. Ignatev, "The Simplified Control Technique for PMSM Torque Ripple Reduction," in Proceedings of 2020 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), pp. 475-481, Jul. 2020.
    [22] C. Xia, B. Ji and Y. Yan, "Smooth Speed Control for Low-Speed High-Torque Permanent-Magnet Synchronous Motor Using Proportional–Integral–Resonant Controller," IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2123-2134, Apr. 2015.
    [23] 巫昌圜,內藏式永磁同步馬達弱磁控制於電動載具速度提升之探討與實現,國立成功大學電機工程學系碩博士班碩士論文,2004。
    [24] 楊國良,李建雄,永磁同步電機控制技術,知識產權出版社,2015。
    [25] P. Krause, O. Wasynczuk, S. Sudhoff and S. Pekarek. Analysis of Electric Machinery and Drive Systems, 3rd ed, Wiley-IEEE Press, 2013.
    [26] S. K. Sul. Control of Electric Machine Drive Systems, Wiley-IEEE Press, 2011.
    [27] 陳念慈,碳化矽功率元件應用於永磁同步馬達驅動器之系統響應分析,國立成功大學電機工程學系碩士論文,2019。
    [28] 吳宗庭,非正弦反電動勢表面型永磁馬達之轉矩漣波抑制驅動技術,國立成功大學電機工程學系碩士論文,2021。
    [29] 羅聲喨,永磁同步馬達模型建立與控制,國立中央大學電機工程學系在職專班碩士論文,2014。
    [30] M. Hsieh and Y. Hsu, "An investigation on influence of magnet arc shaping upon back electromotive force waveforms for design of permanent-magnet brushless motors," IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3949-3951, Oct. 2005.
    [31] M. Shokri, N. Rostami, V. Behjat, J. Pyrhönen and M. Rostami, "Comparison of Performance Characteristics of Axial-Flux Permanent-Magnet Synchronous Machine With Different Magnet Shapes," IEEE Transactions on Magnetics, vol. 51, no. 12, pp. 1-6, Dec. 2015.
    [32] SII. (2022). Hysteresis Loop [Online]. Available:https://www.sii.co.jp/en/me/dianet/support/hysteresis-loop
    [33] Z. Azar, Z. Q. Zhu and G. Ombach, "Influence of Electric Loading and Magnetic Saturation on Cogging Torque, Back-EMF and Torque Ripple of PM Machines," IEEE Transactions on Magnetics, vol. 48, no. 10, pp. 2650-2658, Oct. 2012.
    [34] H. Le-Huy, R. Perret and R. Feuillet, "Minimization of Torque Ripple in Brushless DC Motor Drives," IEEE Transactions on Industry Applications, vol. IA-22, no. 4, pp. 748-755, Jul. 1986.
    [35] R. Teodorescu, F. Blaabjerg, U. Borup and M. Liserre, "A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation," in Proceedings of 19th Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04., 2004, pp. 580-586 Vol.1.
    [36] A. G. Yepes, F. D. Freijedo, J. Doval-Gandoy, Ó. López, J. Malvar and P. Fernandez-Comesaña, "Effects of Discretization Methods on the Performance of Resonant Controllers," IEEE Transactions on Power Electronics, vol. 25, no. 7, pp. 1692-1712, Jul. 2010. 
    [37] R. I. Bojoi, G. Griva, V. Bostan, M. Guerriero, F. Farina and F. Profumo, "Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame," IEEE Transactions on Power Electronics, vol. 20, no. 6, pp. 1402-1412, Nov. 2005.
    [38] L. R. Limongi, R. Bojoi, G. Griva and A. Tenconi, "Digital current-control schemes," IEEE Industrial Electronics Magazine, vol. 3, no. 1, pp. 20-31, Mar. 2009.

    無法下載圖示 校內:2027-09-02公開
    校外:2027-09-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE