簡易檢索 / 詳目顯示

研究生: 陳柏勳
Chen, Po-Syun
論文名稱: 改善主動式有機發光二極體亮度衰減之新式畫素電路設計
New Pixel Circuit Design to Improve Luminance Drop of AMOLED
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 46
中文關鍵詞: 主動式有機發光二極體薄膜電晶體低溫多晶矽非晶相銦鎵鋅氧化物
外文關鍵詞: AMOLED, TFT, LTPS, a-IGZO
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動式有機發光二極體顯示器之畫素電路以薄膜電晶體作為驅動與開關元件,然而薄膜電晶體元件的電氣特性變異,例如臨界電壓的變異或漂移,會導致驅動有機發光二極體的電流產生無法忽視的偏差量。更甚者,有機發光二極體材料會隨著長時間的使用而老化,使得整體面板的亮度下降,進而影響顯示器的使用壽命。目前已經有許多相關畫素補償電路被提出來改善畫面品質及增加使用壽命。由於非晶相銦鎵鋅氧化物薄膜電晶體具有極佳的電氣特性,因此被視為應用於主動式有機發光二極體顯示器的選擇之一。然而不同製程下的非晶相銦鎵鋅氧化物薄膜電晶體會有常關型與常開型兩種不同特性,而常開型的非晶相銦鎵鋅氧化物薄膜電晶體對於畫素電路設計將是相當重要的考慮因素。
    本論文針對上述問題提出三個新式畫素補償電路,並且使用HSPICE軟體驗證其性能。第一個提出的電路適用於小尺寸、高解析度的顯示器,其3T2C之電路架構對於低溫多晶矽薄膜電晶體臨界電壓的變異具有相當的抗擾性。從模擬結果可知,當薄膜電晶體臨界電壓變異量為±0.5V時,所有資料電壓對應電流誤差率皆低於5%。然而由於此電路無法補償有機發光二極體的亮度衰減,因此提出第二個採用非晶相銦鎵鋅氧化物薄膜電晶體的5T1C電路,以偵測驅動薄膜電晶體及有機發光二極體臨界電壓的方式,能同時補償常關型與常開型非晶相銦鎵鋅氧化物薄膜電晶體的臨界電壓飄移,並進一步改善有機發光二極體材料老化所造成之亮度衰減。此電路之驅動薄膜電晶體電氣特性被實際量測出來,其電氣特性之模擬數據也被建立來進行HSPICE模擬。由模擬結果可知此5T1C電路之常關型與常開型薄膜電晶體臨界電壓飄移所造成的電流誤差在整個資料電壓範圍內皆低於5%。此外,此電路亦在有機發光二極體劣化時提供額外驅動電流來維持亮度穩定。然而第二個電路結構極易受薄膜電晶體的寄生電容影響而使儲存電容的電壓失真,降低此電路的補償性能。為了提高電路之穩定度,因此提出第三個採用非晶相銦鎵鋅氧化物薄膜電晶體之畫素電路來補償薄膜電晶體的臨界電壓飄移和改善有機發光二極體的亮度衰減。在常關型與常開型驅動薄膜電晶體之臨界電壓飄移1V的情況下,模擬結果顯示第三個電路的電流誤差率皆在3.5%以下。並且在輸入不同資料電壓時的對應亮度誤差在5%以內。根據上述模擬結果,第三個畫素電路展現對元件特性衰減的抗擾性。

    For the pixel circuits of active-matrix organic light-emitting diode (AMOLED) displays, thin-film transistors (TFTs) are used as the driving and switching devices. However, variations in the electrical characteristics of TFTs, such as threshold voltage variations and shifts, cause non-negligible deviations in OLED currents. Furthermore, the luminance of OLED devices degrades over time, which shortens the life-time of AMOLED displays. Therefore, several compensating pixel circuits have been developed to improve the image quality as well as extend the life-time of the displays. Recently, the amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs are regarded as one of the candidates employed in AMOLED displays for superior electrical characteristics. While they may be normally-off or normally-on depending on the fabrication process, the normally-on characteristic of the a-IGZO TFTs is a critical issue for the design of the pixel circuits.
    This thesis proposes three new pixel circuits and verifies their performance by HSPICE simulations. The first proposed 3T2C pixel circuit has immunity against the threshold voltage variations of the low temperature polycrystalline-silicon (LTPS) driving TFT for small-size and high-resolution AMOLED displays. Based on simulation results, relative current error rates among the entire data voltage range all fall below 5% with ±0.5 V threshold voltage variations of the driving TFT. However, this pixel circuit is incapable of compensation for the OLED luminance drop. Therefore, the second proposed 5T1C pixel circuit adopting a-IGZO TFTs is designed to compensate for both the threshold voltage shift of the driving TFT and luminance drop of the OLED by internally detecting the threshold voltages of the driving TFT and the OLED. The electrical characteristics of the driving a-IGZO TFT are experimentally measured and the simulation parameters are extracted for HSPICE simulations. The simulation results demonstrate that the fluctuations of OLED currents resulting from the threshold voltage shifts of the normally-off and normally-on driving TFTs are suppressed below 5%. Furthermore, the maintenance of the normalized luminance is also achieved by increasing the driving current for OLED. Nevertheless, the structure of the proposed 5T1C pixel circuit is sensitive to the parasitic capacitance of the TFTs, which easily affects the stored voltage in the storage capacitor and therefore reduces the compensation performance of the proposed 5T1C pixel circuit.
    To improve circuit stability, the third 5T2C pixel circuit adopting a-IGZO TFTs is proposed with compensations for the threshold voltage shifts of the driving TFT and the luminance drop of OLED. According to simulation results, the current error rates are within 3.5% for the proposed 5T2C pixel circuit, with 1V shift in the threshold voltage of normally-off and normally-on driving TFTs. Moreover, the deviations of the normalized luminance of the proposed pixel circuit fall 5% for different data voltages. Thus, the proposed 5T2C pixel circuit has high immunity against the VTH shifts of a-IGZO driving TFTs and the luminance drop of OLED devices.

    Pages Chinese Abstract....i English Abstract...iii Aknowledgement...v Contents...vi Table Captions...viii Figure Captions...ix Chapter 1 Introduction 1.1 Background...1 1.2 Motivation and Prior Studies...5 1.3 Thesis Organization...14 Chapter 2 Simple Pixel Circuit to Compensate for Threshold Voltage of LTPS TFTs for AMOLED Displays 2.1 Status of LTPS TFTs in AMOLED displays...15 2.2 Pixel Circuit Schematic and Operation...16 2.3 Results and Discussions...18 2.4 Summary...18 Chapter 3 New Pixel Circuit Adopting a-IGZO TFTs to Compensate for Luminance Degradation of Active-Matrix OLED Displays 3.1 Status of a-IGZO TFTs in AMOLED displays...22 3.2 Pixel Circuit Schenatic and Operation...23 3.3 Results and Discussions...25 3.4 Summary...26 Chapter 4 New a-IGZO Pixel Circuit to Improve Luminance Uniformity for AMOLED Displays 4.1 Priors works of AMOLED pixel circuits...30 4.2 Pixel Circuit Schematic and Operation...31 4.3 Results and Discussions...33 4.4 Summary...34 Chapter 5 Conclusions and Future work 5.1 Conclusions...38 5.2 Future work...40 References...41

    [1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., vol. 51, pp. 913–915, 1987.
    [2] H. S. Bang, D. U. Lee, T. W. Kim, J. H. Kim, J. H. Seo, and Y. K. Kim, “Efficiency stabilized deep blue organic light-emitting devices with a DPVBi/CBP step emitting layer operating at low voltages”, Mol. Cryst. Liq. Cryst., vol. 470, pp. 259–267, 2007.
    [3] B.Geffroy, P. I. Roy, C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies”, Society of Chemical Industry Polym Int., vol. 55, no 6, pp. 572–582, Jun. 2006.
    [4] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE J. Display Technol., vol. 1, no. 2, pp. 248–266, Dec. 2005.
    [5] C.W. Lin, M. C. T. Chao Y. S. Huang, “A novel pixel design for AM-OLED displays using nanocrystalline silicon TFTs,” IEEE Transactions on VLSI systems, vol. 19, no. 6, pp. 939–952, Jun. 2011.
    [6] M. J. Powell, C. Berkel, and J. R. Hughes, “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors,” Appl. Phys. Lett., vol. 54, pp. 1323–1325, Jan. 1989.
    [7] T. F. Chen, C. F. Yeh, and J. C. Lou, “Investigation of grain boundary control in the drain junction on laser-crystalized poly-Si thin film transistors,” IEEE Electron Device Lett., vol. 24, no. 7, pp. 457–459, Jul. 2003.
    [8] J. S. Lee, S. Chang, S. M. Koo, and S. Y. Lee, “High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 225–227, Mar. 2010.
    [9] Z. Ye, and M. Wong, “Characteristics and applications of the hysteresis in ZnO TFT with SiO2 gate oxide,” in Proc. IDW Dig., 2010, pp. 1825–1828.
    [10] H. C. Lai, B. J. Tzeng, Z. Pei, C. M. Chen, and C. J. Huang, “Ultra-flexible amorphous Indium-Gallium-Zinc oxide (a-IGZO) thin-film transistor,” in SID Tech. Dig., 2012, pp.764–767.
    [11] L. C. Lee, H. C. Ting, F. W. Chang, T. H. Shih, C. W. Chou, H. H. Lu, C. Y. Chen, and Y. H. Lin, “Highly stabile amorphous indium gallium zinc oxide TFT with photosensitivity organic passivation layer for AMOLED displays,” in Proc. IDW Dig., 2010, pp. 731–734.
    [12] H. S. Seo, J. U. Bae, D. W. Kim, C. I. Ryoo, I. K. Kang, S. Y. Min, Y. Y. Kim, J. S. Han, C. D. Kim, Y. K. Hwang, and I. J. Chung, “Development of highly stable a-IGZO TFT with TiOx as a passivation layer for active-matrix display,” in SID Tech. Dig., 2010, pp.1132–1135.
    [13] B. Kim, S. B. Ryu, S. C. Choi, S. H. Choi, Y. H. Jang, K. S. Park, C. D. Kim, Y. K. Hwang, I. J. Chung, and M. K. Han, “A novel depletion mode IGZO TFT gate driver embedded with a level shifter,” in Proc. IDW Dig., 2010, pp. 649–652.
    [14] G. R. Chaji, C. Ng, A. Nathan, A. Werner, J. Birnstock, O. Schneider, and J. B. Nimoth, “Electrical compensation of OLED luminance degradation” IEEE Electron Device Lett., vol. 28, no. 12, pp. 1108–1110, Dec. 2007.
    [15] J. C. Goh, J. Jang, K. S. Cho, C. K. Kim, “A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes” IEEE Electron Device Lett., vol. 24, no. 9, pp. 583–585, Sep. 2003.
    [16] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp. 897–899, Dec. 2005.
    [17] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129–131, Feb. 2007.
    [18] T. Tanabe, S. Amano, H. Miyake, A. Suzuki, R. Komatsu, J. Koyama, S. Yamazaki, K. Okazaki, M. Katayama, H. Matsukizono, Y. Kanzaki, and T. Matsuo, “New threshold voltage compensation pixel circuits in 13.5-inch quad full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs ,” in SID Tech. Dig., 2012, pp. 88–91.
    [19] H. Jung, Y. Kim, Y. Kim, C. Chen, J. Kanicki, and H. Lee, “A-IGZO TFT based pixel circuits for AM-OLED displays,” in SID Tech. Dig., 2012, pp. 1097–1100.
    [20] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim, and S. S. Kim, “Amorphous oxide TFT backplane for large size AMOLED TVs,” in SID Tech. Dig., 2010, pp. 1037–1040.
    [21] R. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875–878.
    [22] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes for a-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, no. 2, pp. 267–277, Dec. 2005.
    [23] S. Ono, K. Miwa, Y. Maekawa, and T. Tsujimura, “VT compensation circuit for AM OLED displays composed of two TFTs and one capacitor, ” IEEE Trans. Electron Device, vol. 54, no. 3, pp. 462–467, Mar. 2007.
    [24] J. C. Goh, H. J. Chung, J. Jang, and C. H. Han, “A new pixel circuit for active matrix organic light emitting diodes, ” IEEE Electron Device Lett., vol. 23, no. 9, pp. 544–546, Sep. 2002.
    [25] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, pp. 690–692, Oct. 2004.
    [26] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light-emitting diode with low temperature polycrystalline silicon thin-film transistors,” J. Display Technol., vol. 1, no. 1, pp. 100–104, Sep. 2005.
    [27] C. L. Lin, C. C. Hung, W. Y. Chang, M. H. Cheng, P. Y. Kuo, and Y. C. Chen, “Voltage driving scheme using three TFTs and one capacitor for active-matrix organic light-emitting diode pixel circuits,” J. Display Technol., vol. 8, no. 10, pp. 602–608, Oct. 2012.
    [28] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of brightness uniformity by a new voltage-modulated pixel design for AMOLED displays,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 743–745, Sep. 2006.
    [29] W. J. Wu, L. Zhou, R. H. Yao, and J. B. Peng, “A new voltage-programmed pixel circuit for enhancing the uniformity of AMOLED displays, ” IEEE Electron Device Lett., vol. 32, no. 7, pp. 931–933, Jul. 2011.
    [30] H. J. In, P. S. Kwag, J. S. Kang, O. K. Kwon, H. K. Chung, “Voltage-programming method with transimpedance-feedback technique for threshold voltage and mobility compensations in large-area high-resolution AMOLED displays, ”J. Soc. Info. Display, vol. 14, no. 8, pp. 665–671, 2006.
    [31] G. H. Lee, S. K. Kim, Y. S. Son, J. Y. Jeon, Y. J. Jeon, and G. H. Cho, “A fast driving circuit for AMOLED displays using current feedback,” in SID Tech. Dig., 2006, pp.363–365.
    [32] S. Sambandan, and A. Nathan, “Single-technology-based statistical calibration for high-performance active-matrix organic LED displays,” J. Display Technol., vol. 3, no. 3, pp. 284–294, Sep. 2007.
    [33] H. J. In and O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 377–379, Apr. 2009.
    [34] M. Kimura, and S. Imai, “Degradation evaluation of α-IGZO TFTs for application to AM-OLEDs,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 963–965, Sep. 2010.
    [35] C. Chen, J. Kanicki, K. Abe, and H. Kumomi, “AM-OLED pixel circuits based on a-InGaZnO thin film transistors,” in SID Tech. Dig., 2009, pp. 1128–1131.
    [36] H. H. Hsieh, T. T. Tsai, C. Y. Chang, H. H. Wang, J. Y. Huang, S. F. Hsu, Y. C. Wu, T. C. Tsai, C. S. Chuang, L. H. Chang, and Y. H. Lin, “A 2.4-in. AMOLED with IGZO TFTs and inverted OLED devices,” in SID Tech. Dig., 2010, pp. 140–143.
    [37] M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, “Gate-bias stress in amorphous oxide semiconductors thin-film transistors,” Appl. Phys. Lett., vol. 95, pp. 063502, 2009.
    [38] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” J. Display Technol., vol. 3, no. 1, pp. 36–39, Mar. 2007.
    [39] C. L. Lin, T. T. Tsai, and Y. C. Chen, “A novel voltage-feedback pixel circuit for AMOLED displays,” J. Display Technol., vol. 4, no. 1, pp. 54–60, Mar. 2008.
    [40] C. L. Lin, W. Y. Chang, C. C. Hung, and C. D. Tu, “LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 700–702, May 2012.
    [41] C. L. Lin, and T. T. Tsai, “A novel voltage driving method using 3-TFT pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 6, pp. 489–491, Jun. 2007.
    [42] G. R. Chaji, D. Striakhilev, and A. Nathan, “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs,” IEEE Electron Device Lett., vol. 26, no. 10, pp. 737–739, Oct. 2005.
    [43] M. Bagheri, S. J. Ashtiani, and A. Nathan, “Fast voltage-programmed pixel architecture for AMOLED displays,” J. Display Technol., vol. 6, no. 5, pp. 191–195, May 2010.
    [44] T. Liu, and J. C. Sturm, “3-TFT OLED pixel circuit for high stability with in-pixel current source,” in SID Tech. Dig., 2012, pp. 1101–1103.
    [45] M. H. M. Lu, M. Hack, R. Hewitt, M. S. Weaver, and J. J. Brown “Power consumption and temperature increase in large area active-matrix OLED displays,” J. Display Technol., vol. 4, no. 1, pp. 47–53, Mar. 2008.
    [46] N. Saito, T. Ueda, S. Nakano, Y. Hara, K. Miura, H. Yamaguchi, I. Amemiya, A. Ishida, Y. Matsuura, A. Sasaki, J. Tonotani, M. Ikagawa, “Amorphous In-Ga-Zn-Oxide TFTs with high stability against bias temperature stress ,”in IDW Tech. Dig., 2010, pp. 1855–1858.
    [47] Y. H. Kim, M. K. Han, J. I. Han, and S. K. Park, “Effect of metallic composition on electrical properties of solution-processed indium-gallium-zinc-oxide thin-film transistors ,” IEEE Electron Device Lett., vol. 57, no. 5, pp. 1009–1014, May 2010.
    [48] H. H. Hsieh, C. H. Wu, C. W. Chien, C. K. Chen, C. S. Yang, C. C. Wu, “Influence of channel-deposition conditions and gate insulators on performance and stability of top-gate IGZO transparent thin-film transistors ,” J. Soc. Info. Display, vol. 18, no. 10, pp. 796–801, 2010.
    [49] H. Yim, D. H. Kim, S. C. Choi, B. G. Choi, S. Lee, S. K. Kim, K. S. Park, J. U. Bae, C. D. Kim, M. Jun, Y. K. Hwang, “Highly stable amorphous indium gallium zinc oxide thin-film transistors with N2O plasma treatment ,” in SID Tech. Dig., 2011, pp. 1170–1172.
    [50] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H .C. Cheng, “A New pixel circuit for driving organic light-emitting Diode with low temperature polycrystalline Silicon thin-film transistors ,” J. Display Technol., vol. 1, no. 1, pp. 100–104, Sep. 2005.

    無法下載圖示 校內:2015-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE