簡易檢索 / 詳目顯示

研究生: 吳昭呈
wu, zhao-cheng
論文名稱: 應用於可攜式生醫訊號感測系統之低功率類比前端放大電路
A Low-Power AFE Amplifier for Portable Biomedical Signal Sensing Application
指導教授: 羅錦興
Luo, Ching-Hsing
黃弘一
Huang, Hong-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 51
中文關鍵詞: 截波穩壓儀表放大器儀表放大器
外文關鍵詞: instrumentation amplifier
相關次數: 點閱:110下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一個低耗能低雜訊的類比前端放大電路的設計(AFE)。針對可攜式系統需要低功率的需求提出一個簡化版的微分差動儀表放大器,可以有效的降低功率和縮小晶片面積,並且在微分差動放大器中加入截波穩壓技術,可以有效的移除閃爍雜訊,達到低雜訊的特性,整體晶片為目前EEG、ECG通用類比前端放大電路中消耗功率非常低,晶片面積最小的著作。使用台積電0.18微米1P6M的製程。在Post simulation中供應電壓為1.8V,在工作頻率10kHz有效訊號頻寬10 kHz下,平均消耗功率16μW,共模雜訊抑制比(Common Mode Rejection Ratio, CMRR)達到140dB。整個晶片的核心面積為0.082 mm2。

    In this paper, a low-power and low-noise CMOS analog front-end amplifier is presented in this work. An analog front-end amplifier circuit includes the instrumentation amplifier (IA), low-pass filter (LPF) and the gain stage. Required for portable systems demand, we propose a simplified chopper-stabilized differential difference instrumentation amplifier, it can effectively reduce the power and reduce the chip area. For the present EEG and ECG signal acquisition system, this work has the lowest power consumption and the smallest chip area. The circuit was prototyped in 0.18um CMOS process and consumes 16.0μW from a 1.8 V supply voltage. Simulation results show that CMRR is over 140dB. The core area of the test chip is 0.082 mm2.

    目錄 第一章 序論 1 1.1 研究動機 1 1.2 生醫訊號 2 1.3 論文架構 3 第二章 類比前端放大電路發展現況 4 2.1 傳統式儀表放大器 4 2.2 運算轉導儀表放大器 6 2.3 電流平衡式儀表放大器 7 2.4 微分差動儀表放大器 8 2.5 截波穩壓技術(Chopper Stabilization Technique) 10 2.6 類比前端放大電路系統規格與需求 12 第三章 低功率類比前端放大電路設計 14 3.1 ECG類比前端放大電路系統架構 14 3.2 微分差動儀表放大器 14 3.3 EEG、ECG通用類比前端放大電路系統架構 18 3.4 截波穩壓微分差動儀表放大器 18 3.5 二階放大器 20 3.6 二階低通濾波器 21 3.7 增益級 22 3.8 類比前端讀取電路結論 23 第四章 晶片實現、驗證 24 4.1 全電路佈局與考量 24 4.2 晶片腳位分佈圖 29 4.3 測試驗證平台架構 31 4.4 規格定義與佈局後模擬 31 第五章 晶片測試與ECG訊號量測 38 5.1 ECG類比前端放大電路量測環境與量測結果 38 5.2 ECG訊號量測 41 5.3 EEG、ECG通用類比前端放大電路量測環境與EEG量測方法 45 第六章 總結與未來研究方向 49 6.1 總結與未來研究方向 49 Reference 50

    Reference

    [1] J. G. Webster, Medical Instrumentation: Application and Design, 3rd ed. New York: Wiley, 1998.
    [2] R. R. Harrison, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp.958-965, Jun. 2003.
    [3] H. Krabbe,“A high-performance monolithic instrumentation amplifier,” in IEEE ISSCC Dig. Tech. Papers, vol. 14, pp.186-187, Feb. 1971.
    [4] F. L. Eatock,“A monolithic instrumentation amplifier with low input current,” in IEEE ISSCC Dig. Tech. Papers, vol. 16, pp.148-149, Feb. 1973.
    [5] A. P. Brokaw ,“An improved monolithic instrumentation amplifier,” IEEE J. Solid-State Circuits, vol. sc-10, no. 6, pp.417-423, Dec. 1975.
    [6] M. S. J. Steyaert,“A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE J. Solid-State Circuits, vol. sc-22, no. 6, pp. 1163-1168, Dec.1987.
    [7] R. Martins, “A CMOS IC for portable EEG acquisition systems,” in Proc.IEEE Tech. Conf. Instrumentation and Measurement, vol. 2, pp. 1406-1410, May 1998.
    [8] R. Martins,“A CMOS IC for portable EEG acquisition systems,” IEEE Trans. Instrum. Meas., vol. 47, no. 5,pp. 1191-1196, Oct. 1998.
    [9] R. F. Yazicioglu,“Integrated low-power 24-channel EEG front-end,” IEE Electron. Lett., vol. 41, no. 8, pp.457-458, Apr. 2005.
    [10] R. F. Yazicioglu,“Effect of electrode offset on the CMRR of current balancing instrumentation amplifiers,” Ph.D. Res. Microelec. Elec. (PRIME), vol. 1, pp. 35-38, Jul. 2005
    [11] R. F. Yazicioglu, “A 60μW 60nV/root Hz readout front-end for portable biopotential acquisition systems,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1100-1110,May 2007.
    [12] E. Sackinger “A versatile building block: The CMOS differential difference amplifier,” IEEE J. Solid-State Circuits, vol. SC-22, no. 4, pp. 287-294, Apr. 1987.
    [13] K. A. Ng “A CMOS analog front-end IC for portable EEG/ECG monitoring applications,” IEEE Trans. Circuits Syst. I, Reg.Papers, vol. 52, no.11, Nov. 2005.
    [14] C. C. Enz ,“Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling,and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
    [15] A. Bakker,“A CMOS nested-chopper instrumentation amplifier with 100-nV offset,” IEEE J. Solid-State Circuits,vol. 35, no. 12, Dec. 2000.
    [16] A. C. Metting Van Rijn,“High-quality recording of bioelectric events. I: Interference reduction, theory and practice,” Med. Biol. Eng. Comput., vol. 28, pp. 389-397, Sep. 1990.
    [17] D. A. Johns, Analog Integrated Circuit Design. New York: Wiley,1997.
    [18] Allen,Cmos Analog Circuit Design. 2rd ed” Oxford, 2002.
    [19] Razavi,Design of Analog CMOS Integrated Circuits, Mc Graw Hill,2000.
    [20] Tim Denison, “A 2μW 100nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of Neural Field Potentials,” IEEE J. Solid-State Circuits, vol. 42, no. 12, Dec. 2007
    [21] E. M. Spinelli,“AC-coupled front-end for biopotential measurements,”IEEE Trans. Biomed. Eng., vol. 50, no. 3, pp. 391-395, Mar. 2003.
    [22] C. J. Yen,“Micro-power low-offset instrumentation amplifier for biomedical system applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 4, pp. 691-699, Apr.2004.

    下載圖示
    2014-08-28公開
    QR CODE