簡易檢索 / 詳目顯示

研究生: 黃浤源
Huang, Hong-Yuan
論文名稱: 雲林外海離岸風場選址最適方案之研究
Optimal Site Selection of Offshore Wind Farm off Yunlin County
指導教授: 劉大綱
Liu, Ta-Kang
張懿
Chang, Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 海洋科技與事務研究所
Institute of Ocean Technology and Marine Affairs
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 海洋空間規劃離岸風電Marxan海域使用活動
外文關鍵詞: marine spatial planning, offshore wind farm, Marxan, marine use activities
相關次數: 點閱:152下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我國領海區域使用項目繁雜,又因近年來政府大力推動離岸風力發電,但《再生能源發展條例》規定離岸風電只得於領海區域內開發,有限的海域空間加上新興能源的發展政策,領海內之空間競合問題愈發激烈。各利害關係人皆主張其環境或資源使用權應被優先考量,如何兼顧海洋多元利用與保障各利害關係人的權利成為台灣海洋治理的一大難題。本研究旨在以科學資料為基礎,透過系統化的方法提出離岸風場劃設的最適建議。
    本研究以雲林外海離岸風場為例,彙集海運航道、海底電纜、海洋保護區、漁船動態等資料,並使用決策輔助工具Marxan作為最適選址分析方法,透過相關因素參數化後運行得到最佳選址結果。研究結果選定之最佳開發場址年預估發電量可達20億度電,總裝置容量640MW。與目前政府及開發商提出之場址比較,本研究所提出之場址不僅避開重要漁場作業範圍及商船主要航道,同時又不損及風能產出,為雲林外海最具成本效益的風場開發地點。
    應用海洋空間規劃之決策輔助工具於離岸風場選址,其結果可作為利害關係人對海洋空間規劃之溝通媒介,以科學數據為基礎,不僅可提供可視化圖層進行具體空間劃分討論,更能促進利害關係人用海爭議之協調,為我國發展離岸風電提供具科學數據選址規劃依據。

    The use of sea space and marine resources in Taiwanese territorial waters is complex. Because of the vigorous promotion of offshore wind power generation by the Taiwanese government since 2015, the competition for space in Taiwanese territorial waters has become increasingly intense. Balancing sea use sites among various stakeholders has become a major problem for Taiwanese ocean governance. Therefore, a reliable planning method is essential. This study developed optimal recommendations for offshore wind farm site selection by adopting a systematic approach based on scientific data.
    The present study evaluated a planned offshore wind farm off the coast of Yunlin County as an example; collected data sets on shipping lines, submarine cables, marine protected areas, and fishing boats; and used the Marxan decision support tool to determine the most suitable wind farm location. The selected optimal site has an estimated annual power generation capacity of 2 billion kWh based on a total installation capacity of 640 MW. The results of this study can be used as a reference to resolve disputes among stakeholders and to create a visual model for facilitating sea use discussions.

    摘要 i Abstract ii 誌謝 ix 目錄 x 表目錄 xii 圖目錄 xiii 第一章、前言 1 1.1 研究背景與動機 1 1.2 研究目的 6 第二章、文獻回顧 8 2.1 海洋空間規劃 8 2.1.1 海域管理法 10 2.2 海洋空間規劃應用於離岸風場實例 10 2.3 決策輔助工具 15 2.3.1 決策輔助工具之挑選 16 2.3.2 Marxan介紹 17 2.4 利害關係人 20 第三章、研究方法 23 3.1 研究區域 24 3.2 雲林離岸風場海域使用概況 25 3.3 計算規則 33 3.3.1 海域功能計算 34 3.3.2 Marxan參數計算 38 第四章、研究結果 40 4.1 背景資料結果 40 4.2 Marxan分析成果 44 4.2.1 不同情境 45 第五章、討論 49 5.1 Marxan選址結果 49 5.2 其它潛力場址 52 第六章、結論與建議 54 6.1 結論 54 6.2 建議 54 英文參考文獻 56 中文參考文獻 66

    Abramic, A., García Mendoza, A., & Haroun, R. (2021). Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles. Renewable and Sustainable Energy Reviews, 145. doi:10.1016/j.rser.2021.111119
    Alexander, K. A., Wilding, T. A., & Jacomina Heymans, J. (2013). Attitudes of Scottish fishers towards marine renewable energy. Marine Policy, 37, 239-244. doi:10.1016/j.marpol.2012.05.005
    Argin, M., & Yerci, V. (2017). Offshore wind power potential of the Black Sea region in Turkey. International Journal of Green Energy, 14(10), 811-818. doi:10.1080/15435075.2017.1331443
    Arnstein, S. R. (2019). A ladder of citizen participation. Journal of the American planning association, 85(1), 24-34.
    Balat, M. (2009). A review of modern wind turbine technology. Energy Sources, Part A, 31(17), 1561-1572.
    Bergström, L., Kautsky, L., Malm, T., Rosenberg, R., Wahlberg, M., Capetillo, N. Å., & Wilhelmsson, D. (2014). Effects of offshore wind farms on marine wildlife—a generalized impact assessment. Environmental Research Letters, 9(3), 034012.
    Brenner, J., & McNulty, V. (2018). TUNA MIGRATIONS.
    Chalastani, V. I., Manetos, P., Al-Suwailem, A. M., Hale, J. A., Vijayan, A. P., Pagano, J., . . . Butt, F. (2020). Reconciling tourism development and conservation outcomes through marine spatial planning for a Saudi Giga-Project in the Red Sea (The Red Sea Project, Vision 2030). Frontiers in Marine Science, 7, 168.
    Chalastani, V. I., Tsoukala, V. K., Coccossis, H., & Duarte, C. M. (2021). A bibliometric assessment of progress in marine spatial planning. Marine Policy, 127. doi:10.1016/j.marpol.2020.104329
    Chen, J.-L., Liu, H.-H., Chuang, C.-T., & Lu, H.-J. (2015). The factors affecting stakeholders' acceptance of offshore wind farms along the western coast of Taiwan: Evidence from stakeholders' perceptions. Ocean & Coastal Management, 109, 40-50. doi:10.1016/j.ocecoaman.2015.02.012
    Curtice, C., Dunn, D. C., Roberts, J. J., Carr, S. D., & Halpin, P. N. (2012). Why ecosystem-based management may fail without changes to tool development and financing. Bioscience, 62(5), 508-515.
    Desmond, C., Murphy, J., Blonk, L., & Haans, W. (2016). Description of an 8 MW reference wind turbine. Journal of Physics: Conference Series, 753. doi:10.1088/1742-6596/753/9/092013
    Domínguez-Tejo, E., Metternicht, G., Johnston, E., & Hedge, L. (2016). Marine Spatial Planning advancing the Ecosystem-Based Approach to coastal zone management: A review. Marine Policy, 72, 115-130. doi:10.1016/j.marpol.2016.06.023
    Douvere, F., & Ehler, C. N. (2009). New perspectives on sea use management: initial findings from European experience with marine spatial planning. Journal of environmental management, 90(1), 77-88.
    Díaz, H., & Guedes Soares, C. (2020). An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline. Renewable and Sustainable Energy Reviews, 134. doi:10.1016/j.rser.2020.110328
    Díaz, H., & Soares, C. (2020). Review of the current status, technology and future trends of offshore wind farms. Ocean Engineering, 209. doi:10.1016/j.oceaneng.2020.107381
    Ehler, C. (2017). A guide to evaluating marine spatial plans.
    Ehler, C., & Douvere, F. (2007). Visions for a Sea change: Report of the First International Workshop on Marine Spatial Planning, Intergovernmental Oceanographic Commission and the Man and the Biosphere Programme UNESCO Headquarters. Paris, France. 8-10 November 2006.
    Ehler, C. N. (2021). Two decades of progress in Marine Spatial Planning. Marine Policy, 132. doi:10.1016/j.marpol.2020.104134
    Esteban, M. D., Diez, J. J., López, J. S., & Negro, V. (2011). Why offshore wind energy? Renewable Energy, 36(2), 444-450. doi:10.1016/j.renene.2010.07.009
    Evans, S. (2019). Analysis: Renewables could match coal power within 5 years, IEA reveals.
    Freeman, R. E. (2004). The stakeholder approach revisited. Zeitschrift für wirtschafts-und unternehmensethik, 5(3), 228-254.
    Fulton, E. A., Link, J. S., Kaplan, I. C., Savina‐Rolland, M., Johnson, P., Ainsworth, C., . . . Smith, A. D. (2011). Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish and fisheries, 12(2), 171-188.
    Gilliland, P. M., & Laffoley, D. (2008). Key elements and steps in the process of developing ecosystem-based marine spatial planning. Marine Policy, 32(5), 787-796. doi:10.1016/j.marpol.2008.03.022
    Goke, C., Dahl, K., & Mohn, C. (2018). Maritime Spatial Planning supported by systematic site selection: Applying Marxan for offshore wind power in the western Baltic Sea. PLoS One, 13(3), e0194362. doi:10.1371/journal.pone.0194362
    Goodale, M. W., & Milman, A. (2016). Cumulative adverse effects of offshore wind energy development on wildlife. Journal of Environmental Planning and Management, 59(1), 1-21.
    Gubbay, S. (2005). Marine protected areas and zoning in a system of marine spatial planning. A WWF-UK discussion document.
    Gusatu, L. F., Yamu, C., Zuidema, C., & Faaij, A. (2020). A spatial analysis of the potentials for offshore wind farm locations in the North Sea region: Challenges and opportunities. ISPRS International Journal of Geo-Information, 9(2), 96.
    Haggett, C. (2011). Understanding public responses to offshore wind power. Energy Policy, 39(2), 503-510. doi:10.1016/j.enpol.2010.10.014
    Haggett, C., Brink, T. t., Russell, A., Roach, M., Firestone, J., Dalton, T., & McCay, B. J. (2020). Offshore wind projects and fisheres. Oceanography, 33(4), 38-47.
    Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., . . . Fox, H. E. (2008). A global map of human impact on marine ecosystems. science, 319(5865), 948-952.
    Haraldsson, M., Raoux, A., Riera, F., Hay, J., Dambacher, J. M., & Niquil, N. (2020). How to model social-ecological systems? – A case study on the effects of a future offshore wind farm on the local society and ecosystem, and whether social compensation matters. Marine Policy, 119. doi:10.1016/j.marpol.2020.104031
    Henriques, N. S., Monteiro, P., Bentes, L., Oliveira, F., Afonso, C. M. L., & Gonçalves, J. M. S. (2017). Marxan as a zoning tool for development and economic purposed areas - Aquaculture Management Areas (AMAs). Ocean & Coastal Management, 141, 90-97. doi:10.1016/j.ocecoaman.2017.03.016
    Janßen, H., Göke, C., & Luttmann, A. (2019). Knowledge integration in Marine Spatial Planning: A practitioners' view on decision support tools with special focus on Marxan. Ocean & Coastal Management, 168, 130-138. doi:10.1016/j.ocecoaman.2018.11.006
    Jay, S., Flannery, W., Vince, J., Liu, W.-H., Xue, J. G., Matczak, M.,&Toonen, H. (2013). International progress in marine spatial planning.
    Jentoft, S. (2000). Co-managing the coastal zone: is the task too complex? Ocean & Coastal Management, 43(6), 527-535.
    Jongbloed, R. H., van der Wal, J. T., & Lindeboom, H. J. (2014). Identifying space for offshore wind energy in the North Sea. Consequences of scenario calculations for interactions with other marine uses. Energy Policy, 68, 320-333. doi:10.1016/j.enpol.2014.01.042
    Kasemir, B., Jaeger, C. C., & Jäger, J. (2003). Citizen participation in sustainability. Public participation in sustainability science: A handbook, 3.
    Katona, S., Polsenberg, J., Lowndes, J., Halpern, B. S., Pacheco, E., Mosher, L., . . . Farmer, G. (2017). Navigating the seascape of ocean management: waypoints on the voyage toward sustainable use.
    Kern, F., Smith, A., Shaw, C., Raven, R., & Verhees, B. (2014). From laggard to leader: Explaining offshore wind developments in the UK. Energy Policy, 69, 635-646. doi:10.1016/j.enpol.2014.02.031
    Koehn, J. Z., Allison, E. H., Franz, N., & Wiegers, E. S. (2017). How Can the Oceans Help Feed 9 Billion People? In Conservation for the Anthropocene Ocean (pp. 65-88).
    Kota, S., Bayne, S. B., & Nimmagadda, S. (2015). Offshore wind energy: A comparative analysis of UK, USA and India. Renewable and Sustainable Energy Reviews, 41, 685-694. doi:10.1016/j.rser.2014.08.080
    Le Tixerant, M., Le Guyader, D., Gourmelon, F., & Queffelec, B. (2018). How can Automatic Identification System (AIS) data be used for maritime spatial planning? Ocean & Coastal Management, 166, 18-30. doi:10.1016/j.ocecoaman.2018.05.005
    Leopold, M., & Dijkman, E. (2010). Offshore wind farms and seabirds in the Dutch Sector of the North Sea. Retrieved from
    Leslie, H. M., & McLeod, K. L. (2007). Confronting the challenges of implementing marine ecosystem‐based management. Frontiers in Ecology and the Environment, 5(10), 540-548.
    Levontin, P., Kulmala, S., Haapasaari, P., & Kuikka, S. (2011). Integration of biological, economic, and sociological knowledge by Bayesian belief networks: the interdisciplinary evaluation of potential management plans for Baltic salmon. ICES Journal of Marine Science, 68(3), 632-638.
    Lindgren, F., Johansson, B., Malmlöf, T., & Lindvall, F. (2013). Siting conflicts between wind power and military aviation—Problems and potential solutions. Land Use Policy, 34, 104-111. doi:10.1016/j.landusepol.2013.02.006
    Liu, W.-H. (2013). Managing the offshore and coastal fisheries in Taiwan to achieve sustainable development using policy indicators. Marine Policy, 39, 162-171. doi:10.1016/j.marpol.2012.11.001
    Liu, W.-H., Wu, C.-C., Jhan, H.-T., & Ho, C.-H. (2011). The role of local Government in marine spatial planning and management in Taiwan. Marine Policy, 35(2), 105-115. doi:10.1016/j.marpol.2010.08.006
    McDonnell, M. D., Possingham, H. P., Ball, I. R., & Cousins, E. A. (2002). Mathematical methods for spatially cohesive reserve design. Environmental Modeling & Assessment, 7(2), 107-114.
    Ming, Y., Jian, J., Yu, F., Yu, X., Wang, J., & Liu, W. (2019). Molecular footprints of inshore aquatic adaptation in Indo-Pacific humpback dolphin (Sousa chinensis). Genomics, 111(5), 1034-1042. doi:10.1016/j.ygeno.2018.07.015
    Musial, W., Butterfield, S., & Ram, B. (2006). Energy from offshore wind. Paper presented at the Offshore technology conference.
    Nedwell, J., & Howell, D. (2004). A review of offshore windfarm related underwater noise sources. Cowrie Rep, 544, 1-57.
    Newton, A., & Elliott, M. (2016). A typology of stakeholders and guidelines for engagement in transdisciplinary, participatory processes. Frontiers in Marine Science, 3, 230.
    Olsson, P., Folke, C., & Hughes, T. P. (2008). Navigating the transition to ecosystem-based management of the Great Barrier Reef, Australia. Proceedings of the National Academy of Sciences, 105(28), 9489-9494.
    Pınarbaşı, K., Galparsoro, I., Borja, Á., Stelzenmüller, V., Ehler, C. N., & Gimpel, A. (2017). Decision support tools in marine spatial planning: Present applications, gaps and future perspectives. Marine Policy, 83, 83-91. doi:10.1016/j.marpol.2017.05.031
    Pınarbaşı, K., Galparsoro, I., Depellegrin, D., Bald, J., Pérez-Morán, G., & Borja, Á. (2019). A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning. Science of The Total Environment, 667, 306-317.
    Pomeroy, R., & Douvere, F. (2008). The engagement of stakeholders in the marine spatial planning process. Marine Policy, 32(5), 816-822. doi:10.1016/j.marpol.2008.03.017
    Popper, A. N., Fewtrell, J., Smith, M. E., & McCauley, R. D. (2003). Anthropogenic sound: effects on the behavior and physiology of fishes. Marine Technology Society Journal, 37(4), 35-40.
    Portman, M. (2009). Involving the public in the impact assessment of offshore renewable energy facilities. Marine Policy, 33(2), 332-338. doi:10.1016/j.marpol.2008.07.014
    Ram, B. (2011). Assessing integrated risks of offshore wind projects: Moving towards gigawatt-scale deployments. Wind engineering, 35(3), 247-265.
    Reed, M. S. (2008). Stakeholder participation for environmental management: A literature review. Biological Conservation, 141(10), 2417-2431. doi:10.1016/j.biocon.2008.07.014
    Rodrigue, J.-P. (2017). Maritime Transport. In International Encyclopedia of Geography: People, the Earth, Environment and Technology (pp. 1-7).
    Rose, D. C., Sutherland, W. J., Parker, C., Lobley, M., Winter, M., Morris, C., . . . Dicks, L. V. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, 149, 165-174. doi:10.1016/j.agsy.2016.09.009
    Shepherd, G., & management, U. m. p. l. n. C. o. e. (2004). The ecosystem approach: five steps to implementation: IUCN Gland.
    Siemens. (2021). Gamesa. Retrieved from https://www.siemensgamesa.com/products-and-services/offshore/wind-turbine-sg-8-0-167-dd
    Smith, E., & Klick, H. (2007). Explaining NIMBY opposition to wind power. Paper presented at the Annual Meeting of the American Political Science Association.
    Smith, H. D., Maes, F., Stojanovic, T. A., & Ballinger, R. C. (2011). The integration of land and marine spatial planning. Journal of Coastal Conservation, 15(2), 291-303.
    Southall, B. L., Bowles, A. E., Ellison, W. T., Finneran, J. J., Gentry, R. L., Greene Jr, C. R., . . . Nachtigall, P. E. (2008). Marine mammal noise-exposure criteria: initial scientific recommendations. Bioacoustics, 17(1-3), 273-275.
    Stamoulis, K. A., & Delevaux, J. M. S. (2015). Data requirements and tools to operationalize marine spatial planning in the United States. Ocean & Coastal Management, 116, 214-223. doi:10.1016/j.ocecoaman.2015.07.011
    Stelzenmüller, V., Lee, J., South, A., Foden, J., & Rogers, S. I. (2013). Practical tools to support marine spatial planning: A review and some prototype tools. Marine Policy, 38, 214-227. doi:10.1016/j.marpol.2012.05.038
    Stelzenmuller, V., Diekmann, R., Bastardie, F., Schulze, T., Berkenhagen, J., Kloppmann, M., . . . Kraus, G. (2016). Co-location of passive gear fisheries in offshore wind farms in the German EEZ of the North Sea: A first socio-economic scoping. J Environ Manage, 183(Pt 3), 794-805. doi:10.1016/j.jenvman.2016.08.027
    Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D., & Herrick, S. (2011). Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change, 1(9), 449-456. doi:10.1038/nclimate1301
    Toan, D. V., Doan, Q. V., Duy Anh, P. L., & Dinh, V. N. (2018). The zoning of offshore wind energy resources in the Vietnam sea. Paper presented at the Vietnam Symposium on Advances in Offshore Engineering.
    Toke, D. (2011). The UK offshore wind power programme: A sea-change in UK energy policy? Energy Policy, 39(2), 526-534. doi:10.1016/j.enpol.2010.08.043
    UN. (1982). United Nation Convention on the Law of the Seas or UNCLOS.
    van der Wal, J., Quirijns, F., Leopold, M., Slijkerman, D., Glorius, S., & Jongbloed, R. (2011). Inventory of current and future presence of non-wind sea use functions second edition. Retrieved from
    Van der Wal, J., Quirijns, F., Leopold, M., Slijkerman, D., & Jongbloed, R. (2009). Identification and analysis of interactions between sea use functions. Retrieved from
    Vandendriessche, S., Derweduwen, J., & Hostens, K. (2015). Equivocal effects of offshore wind farms in Belgium on soft substrate epibenthos and fish assemblages. Hydrobiologia, 756(1), 19-35.
    Verkiel, J. (2008). Nautische visie windturbineparken op zee, Versie 1.3, Status: DEFINITIEF, September 2008. Available from:〈 http:/www. we-at-sea. org/docs/Nautische% 20visie% 20op% 20windmolenparken% 20Noordzee. pdf.
    Wilhelmsson, D., Malm, T., & Öhman, M. C. (2006). The influence of offshore windpower on demersal fish. ICES Journal of Marine Science, 63(5), 775-784.
    Yang, Y.-C., Wang, H.-Z., & Chang, S.-K. (2013). Social dimensions in the success of a marine protected area: a case in a Taiwan fishing community. Coastal management, 41(2), 161-171.
    Zaucha, J., Gilek, M., Hassler, B., Luttmann, A., Morf, A., Saunders, F., . . . Tusrki, J. (2017). Bonus Policy Brief: Challenges and Possibilities for MSP Integration in the Baltic Sea. Stockholm: Bonus Baltspace. Retrieved March, 25, 2018.
    工業技術研究院. (2015). 台灣離岸風力潛能與優選離岸區塊場址研究.
    仇士愷, &鄭維元. (2019). 離岸風力發電計畫之風機佈置規劃. 中興工程(144), 15-21.
    內政部. (2019). 國土計畫之直轄市縣(市)海域管轄範圍.
    台灣中油股份有限公司. (2021). 中油業務簡介. 24.
    行政院農業委員會. (2017). 臺灣沿海場域漁業活動及環境調查與放流物種資料建立-雲嘉南. 漁業署主管科技計畫.
    吳斐竣. (2022). 離岸風場環評水、陸不通. 自由時報.
    林永旭. (2011). 沿海漁業資源環境與管理之探討: 以台南海岸為例. 撰者,
    邱文彥. (2019). 海域管理法制立法研究. 國家海洋研究院委託研究.
    邵廣昭. (1995). 曾文溪流域之魚種組成及魚類群聚之初步研究. 台灣西部環境變遷及資源管理之研究論文集(中央研究院動物所).
    邵廣昭. (2018). 探索潮汐間的富饒,美麗的潮間帶生態系. 農傳媒.
    胡念祖. (2021). 「海域管理法何去何從?」. 自由時報.
    孫文臨. (2020). 反離岸風機毀傳統漁場 雲林漁民:請風場退出,我們不要補償. 環境資訊電子報.
    孫文臨. (2022). 我國將啟動海域規劃?《海域管理法》草案最快今年送立院. 環境資訊電子報.
    海洋委員會. (2021). 台灣白海豚保育計畫.
    張憲國, 賴羿齊, &陳蔚瑋. (2017). 應用衛星影像的水線辨識於外傘頂洲的灘線變遷. Journal of Photogrammetry and Remote Sensing, 22(4), 243-262.
    經濟部. (2020). 能源轉型白皮書.
    經濟部能源局. (2015). 風力發電單一服務窗口.
    經濟部能源局.(2017). 風力發電推動方案. 能源轉型白皮書重點推動方案.
    經濟部能源局. (2021). 離岸風力發電區塊開發場址規劃申請作業要點.
    遠見雜誌. (2018). 台灣海峽的綠金寶藏.
    蔡佳珊. (2021). 風電政策五大缺失與解方:制訂正式法規,落實海洋規劃與公眾參與. 上下游新聞.
    賴品瑀. (2016). 〈離岸風機政策環評過關,避開白海豚棲地500公尺〉. 環境資訊電子報.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE