| 研究生: |
洪健超 Hung, Chien-Chao |
|---|---|
| 論文名稱: |
以慣性與磁性感測元件為基礎之人體動作捕捉系統研製 Development of an Inertial and Magnetic Sensor Based Motion Capture System |
| 指導教授: |
王振興
Wang, Jeen-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 動作捕捉 、加速度計 、磁力計 |
| 外文關鍵詞: | motion capture, accelerometer, magnetometer |
| 相關次數: | 點閱:84 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用微機電陀螺儀、加速度感測器與磁場感測器之整合電路模組及其感測器校正程序與姿態估測演算法,來加以實現低成本、輕重量、小體積及低耗能之即時動作捕捉系統。本動作捕捉系統包含硬體電路及韌體設計、感測器校正程序、姿態估測演算法與人機介面等部分。在硬體及韌體設計方面,微機電感測器整合電路模組由一個三軸陀螺儀、一個三軸加速度感測器、一個三軸磁場感測器、一個微控制器及一個藍牙無線模組所構成。使用者在每個肢節各配戴一個微機電感測器整合電路模組,由微處理器透過控制器區域網路(Controller Area Nettwork, CAN)將各部位感測器之資訊彙整並透過藍牙無線傳輸模組將感測訊號發送至個人電腦並進行感測器校正程序與姿態估測演算法來加以估測人體各部位之姿態。感測器校正程序用以修正感測器之尺度因子、偏移量與軸向非正交等誤差;而姿態估測演算法主要利用擴展式卡爾曼濾波器(Extended Kalman Filter, EKF)進行姿態估測,其中我們利用陀螺儀量測之角速度來建立狀態轉移模型,利用加速度感測器與磁場感測器量測之重力向量與磁場向量來建立觀測模型。本論文所開發之人體動作捕捉系統包含了以下優點:(1)可攜式且使用時不用場地限制、(2)此感測器校正程序可有效地降低感測器本身所存在的誤差及(3)此姿態估測演算法可準確地估測運動姿態。最後,透過人機介面即時顯示人體各部位之姿態利用與Vicon光學式動作捕捉系統之實驗結果比較後,可成功地驗證本人體動作捕捉系統及其感測器校正程序與姿態估測演算法之有效性。
This thesis realizes a low cost, small size, light weight, low power consumption, and real-time motion capture system. The proposed motion capture system includes hardware circuits, firmware design, sensor calibration procedure, attitude estimation algorithm, and human-machine interface. For the hardware circuits and firmware design, each integrated circuit module is composed of a triaxial gyroscope, a triaxial accelerometer, a triaxial magnetometer, a microcontroller, and a Bluetooth wireless transmission module. The proposed integrated circuit modules are deployed on a user whole body including all moveable parts to collect the signals of body movement generated by the accelerometer, gyroscope, and magnetometer in each integrated circuit module. The signals are collected by the microcontroller of each module and sent to a host module through a controller area network (CAN) bus. Finally, the collected signals are transmitted to a personal computer via the Bluetooth wireless module of the host. The sensor calibration procedure is used to reduce the scale factor error, offset, and axial non-orthogonal error. The attitude estimation algorithm utilizes the extended Kalman filter to estimate the attitude angle of each limb. The advantages of the motion capture system include the following: 1) It is portable and can be used anywhere without any external reference device or ambit limitations, 2) the sensor calibration can reduce the sensors’ intrinsic errors effectively, and 3) the attitude estimation algorithm can estimate body postures accurately. The body postures generated by movements can be displayed via the human-machine interface. The comparison results between the proposed system and the Vicon optical motion capture system have successfully validated the effectiveness of the proposed system and its associated sensor calibration procedure and attitude estimate algorithm.
[1] W.-Y. Wong and M.-S. Wong, “Measurement of postural change in trunk movements using three sensor modules,” IEEE Trans. Instrumentation and Measurement, vol. 58, no. 8, pp. 2737-2742, 2009.
[2] E. Bernmark and C. Wiktorin, “A triaxial accelerometer for measuring arm movements,” Applied Ergonomics, vol. 33, no. 6, pp. 541-547, 2002.
[3] Y. Tao, H. Hu, and H. Zhou, “Integration of vision and inertial sensors for 3D arm motion tracking in home-based rehabilitation,” International Journal of Robotics Research, vol. 26, no. 6, pp. 607-624, 2007.
[4] J. Baek and B.-J. Yun, “A sequence-action recognition applying state machine for user interface,” IEEE Trans. Consumer Electronics, vol. 54, no. 2, pp. 719-726, 2008.
[5] S. Scapellato, F. Cavallo, C. Martelloni, and A. M. Sabatini, “In-use calibration of body-mounted gyroscopes for applications in gait analysis,” Sensors and Actuators, A: Physical, vol. 123-124, pp. 418-422, 2005.
[6] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,” IEEE Computer Graphics and Applications, vol. 25, no. 6, pp. 38-46, 2005.
[7] G. Shi, C. S. Chan, W. J. Li, K.-S. Leung, Y. Zou, and Y. Jin, “Mobile human airbag system for fall protection using MEMS sensors and embedded SVM classifier,” IEEE Sensors Journal, vol. 9, no. 5, pp. 495-503, 2009.
[8] M. P. Rothney, M. Neumann, A. Bẻziat, and K. Y. Chen, “An artificial neural network model of energy expenditure using nonintegrated acceleration signals,” Journal of Applied Physiology, vol. 103, pp. 1419-1427, 2007.
[9] J.-Y. Yang, J.-S. Wang, and Y.-P. Chen, “Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers,” Pattern Recognition Letters, vol. 29, no. 16, pp. 2213-2220, 2008.
[10] R. W. Selles, M. A. G. Formanoy, J. B. J. Bussmann, P. J. Janssens, and H. J. Stam, “Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls,” IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 13, no. 1, pp. 81-88, 2005.
[11] X. Yun and E. R. Bachmann, “Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking,” IEEE Trans. Robotics, vol. 22, no. 6, pp. 1216-1227, 2006.
[12] B. Barshan and H. F. Durrant-Whyte, “Inertial navigation systems for mobile robots,” IEEE Trans. Robotics and Automation, vol. 11, no. 3, pp. 328-342, 1995.
[13] E. L. Renk, M. Rizzo, W. Collins, F. Lee, and D. S. Bernstein, “Calibrating a triaxial accelerometer-magnetometer: Using robotic actuation for sensor reorientation during data collection,” IEEE Control Systems Magazine, vol. 25, no. 6, pp. 86-95, 2005.
[14] W. T. Fong, S. K. Ong, and A. Y. C. Nee, “Methods for in-field user calibration of an inertial measurement unit without external equipment,” Measurement Science and Technology, vol. 19, no. 8, pp. 085202, 2008.
[15] J. C. Lotters, J. Schipper, P. H. Veltink, W. Olthuis, and P. Bergveld, “Procedure for in-use calibration of triaxial accelerometers in medical applications,” Sensors and Actuators A: Physical, vol. 68, no. 1-3, pp. 221-228, 1998.
[16]T. Nieminen, J. Kangas, S. Suuriniemi and L. Kettunen, “An enhanced multi-position calibration method for consumer-grade inertial measurement units applied and tested,” Measurement Science and Technology, vol. 21, no. 10, pp. 1-11, 2010.
[17]Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Measurement Science and Technology, vol. 18, no. 7, pp. 1897-1907, 2007.
[18]H. Zhang, Y. Wu, W. Wu, M. Wu, and X. Hu, “Improved multi-position calibration for inertial measurement units,” Measurement Science and Technology, vol. 21. no. 1, pp. 1-11, 2010.
[19] STM32 data sheet, ST Microelectronics
[20] L3G4200D data sheet, ST Microelectronics
[21] LSM303DLH data sheet, ST Microelectronics
[22] M. D. Shuster, “Survey of attitude representations,” Journal of the Astronautical Sciences, vol. 41, no. 4, pp. 439-517, 1993.
[23] D. Roetenberg, P. J. Slycke, and P. H. Veltink, “Ambulatory position and orientation tracking fusing magnetic and inertial sensing,” IEEE Trans. Biomedical Engineering, vol. 54, no. 5, pp. 883-890, 2007.
[24] W. C. Bang, W. Chang, K. H. Kang, E. S. Choi, A. Potanin, and D. Y. Kim, “Self-contained spatial input device for wearable computers,” in Proc. of the 7th IEEE International Symposium on Wearable Computers, 2003, pp. 26-34.
[25] J. B. Kuipers, Quaternions and Rotation Sequences. Princeton, NJ: Princeton Univ. Press, 1999.
[26] A. R. Karduna, P. W. McClure, and L. A. Michener, “Scapular kinematics: Effects of altering the Euler angle sequence of rotations,” Journal of Biomechanics, vol. 33, no. 9, pp. 1063-1068, 2000.
[27] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35-45, 1960.
[28] A. M. Sabatini, “Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing,” IEEE Trans. Biomedical Engineering, vol. 53, no. 7, pp. 1346-1356, 2006.