| 研究生: |
卓芝宇 CHO, Tzu-Yu |
|---|---|
| 論文名稱: |
自媒體內容轉譯探索之扭曲與建設轉譯對受眾的影響:以目標觀眾之觀點 Exploring the Content Recoding of We Media and Its Influence on Content Construction and Distortion: A Target Audience's Perspective |
| 指導教授: |
劉世南
Liou, Shyh-Nan 楊佳翰 Yang, Chia-Han |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 創意產業設計研究所 Institute of Creative Industries Design |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 225 |
| 中文關鍵詞: | 自媒體 、內容轉譯歷程 、扭曲訊和建設性影響 |
| 外文關鍵詞: | We media, Content recoding process, Distort and Construct influence |
| 相關次數: | 點閱:62 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著訊息傳播的蓬勃發展社交媒體平台的多元化,更加速自媒體的發展。自媒體的自主性、地域性、即時性及主題多樣性,使受眾能夠即時參與事件和話題,分享彼此資訊。而過去在沒有自媒體的時候,公眾議題藉由專家、設計師和創作者直接傳播給受眾。自媒體出現後,它就像中介的角色,居中傳遞資訊,同時也產生了把關遴選的特質,而中介者不同創意策略和產製邏輯也大不相同。本研究的目的是探討自媒體在訊息來源和受眾之間轉譯的角色,以及它在溝通裡扮演的角色。特別是在重新編碼時的內容扭曲或建構。
為此,本研究提出訊息處理的歷程模型,探討自媒體本身的動機和轉譯的策略、原始資訊的重新處理模式,以及此類對受眾的影響總結、強化的溝通促進效果,並且進一步探討如何在自媒體與分群中介入自我動機,以及受眾產生的訊息扭曲解讀。總的來說,本研究檢視自媒體訊息中介的角色和社群訊息的轉譯效果,以此討論從觀眾溝通的視角對自媒體的進一步發展和管理。
研究方法採用了案例研究,對自媒體類型進行了群集分析。本文從分類中選擇了一個代表類別(Cluster2),即中等表現和穩定成長的頻道類型作為研究對象。這種類型的自媒體傳達問題的特殊性,以及它引起的大眾影響,引發了熱烈的討論和正面和負面的影響。目前的發展狀態和環境互動的變化可以顯示自媒體發展的新現象。透過Cluster2自媒體的研究,可以作為未來數位化推廣內容問題時,個人、公司和政府控制和參考媒體創建的內容的參考。
研究發現,傳播技術的持續演進給傳統媒體帶來了前所未有的挑戰,特別是在快速內容生產和維持內容真實性之間找到平衡。在當今快速發展的自媒體生態系統中,資訊的建設性和扭曲已不再是單一選擇,而是創作者必須找到正確的結合。透過對不同頻道群集的綜合觀察和評估,揭示了觀眾對內容的期望以及他們是否真正了解創作者的意圖,從而顯示了內容的建設性和潛在扭曲。
基於研究發現,本研究建議創作者在創作過程中需要考慮的關鍵因素包括:1.內容的容錯率,2.創作者與虛擬形象之間的管理差距,3.頻道形象的可擴展性。這將是自媒體健康成長的操作策略。
With the flourishing of information and diversification of social media platforms, recent development of we media has been accelerated. we media's responsiveness, regionality, immediacy and diversity of topics allow audiences to participate in events and topics in real time, and share information with each other. In the past, when there was no we media, experts, designers, and creators used public issues to directly disseminate their information to the audience. As we media appeared, it was like an intermediary, conveying information in the middle, and produced the characteristics of gate selection, and the creative motives of different creative strategies of the intermediary, and the production logic are also very different. The purpose of this research is to explore the role of recoding between the source and the audience of the media, and what kind of communication role it plays, in particular, the content distortion or construction as they recode.
To this end, this research proposes a process model of the information processing, discusses the motivation of the we media itself and the recoding strategy, the reprocessing mode of the original information source, and the summary of the effect of such processing on the audience, the enhanced communication promotion effect, and further discussion how to intervene in self-motivation in we media and niche subgroups, and distorted the interpretation of messages generated by the audience. As whole, this research examines the role of we media message intermediaries and the recoding effect of social messages, , drawing on which to discuss the further development and management of we media from the perspective of audience communication.
The research method used case studies with an cluster analysis of we media types. This article selects a representative category (Cluster2) from the classification, that is, self-media with medium performance and stable growth channel type as the research object. The particularity of the way this type of self-media conveys issues, and the mass impact it causes has a heated discussion and positive and negative impacts. The current development status and changes in environmental interaction can show the new phenomenon of self-media development.. From the research of Cluster2 we media, it can be used as a future digital While promoting content issues, individuals, companies, and governments control and refer to content created by the media.
The findings indicated that the continuous evolution of communication technology has brought unprecedented challenges to traditional media, especially in finding a balance between rapid content production and maintaining content authenticity. In today's rapidly developing we media ecosystem, the constructiveness and distortion of information are no longer single options, but creators must find the right combination of them. Through comprehensive observation and evaluation of different channel groups, it reveals the audience's expectations of the content and whether they truly understand the creator's intentions, thus showing the constructiveness and potential distortion of the content.
Based on the findings, this study recommends that the key factors that creators need to consider during the creative process include: 1. The fault tolerance rate of the content, 2. The management gap between the creator and the virtual image, 3. The scalability of the channel image. It will be an operating strategy for we media’s healthy growth.
Albarran, A. B. (2016). The media economy: Taylor & Francis.
Berg, J. M. (2022). One-hit wonders versus hit makers: Sustaining success in creative industries. Administrative Science Quarterly, 67(3), 630-673.
Berger, J., Sorensen, A. T., & Rasmussen, S. J. (2010). Positive effects of negative publicity: When negative reviews increase sales. Marketing science, 29(5), 815-827.
Berry, L. L., & Parasuraman, A. (2004). Marketing services: Competing through quality: Simon and Schuster.
Berthon, P. R., Pitt, L. F., Plangger, K., & Shapiro, D. (2012). Marketing meets Web 2.0, social media, and creative consumers: Implications for international marketing strategy. Business horizons, 55(3), 261-271.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS quarterly, 351-370.
Boudreau, K. J., Guinan, E. C., Lakhani, K. R., & Riedl, C. (2016). Looking across and looking beyond the knowledge frontier: Intellectual distance, novelty, and resource allocation in science. Management science, 62(10), 2765-2783.
Bowman, S., & Willis, C. (2003). We media. How audiences are shaping the future of news and information, 66, 13-20.
Brewster, M. L., & Lyu, J. (2020). Exploring the parasocial impact of nano, micro and macro influencers. Paper presented at the International Textile and Apparel Association Annual Conference Proceedings.
Burgess, J., & Green, J. (2018). YouTube: Online video and participatory culture: John Wiley & Sons.
Caves, R. E. (2000). Creative industries: Contracts between art and commerce: Harvard University Press.
Chen, Y., Richter, J. I., & Patel, P. C. (2021). Decentralized governance of digital platforms. Journal of Management, 47(5), 1305-1337.
Chen, Z., & Berger, J. (2013). When, why, and how controversy causes conversation. Journal of Consumer Research, 40(3), 580-593.
Clarke, V., & Braun, V. (2013). Successful qualitative research: A practical guide for beginners. Successful qualitative research, 1-400.
Conde, R., & Casais, B. (2023). Micro, macro and mega-influencers on instagram: The power of persuasion via the parasocial relationship. Journal of Business Research, 158, 113708.
Dearolph, A. L. (2014). Vlogging the Museum: YouTube as a tool for audience engagement.
Donaldson, M. S., Corrigan, J. M., & Kohn, L. T. (2000). To err is human: building a safer health system.
Dong, J. (2021). The Challenges and Opportunities of Moderators in Converged Media. Calitatea, 22(184), 99-104.
Edgerly, S., Mourão, R. R., Thorson, E., & Tham, S. M. (2020). When do audiences verify? How perceptions about message and source influence audience verification of news headlines. Journalism & Mass Communication Quarterly, 97(1), 52-71.
Elleström, L. (2016). A medium-centered model of communication. Semiotica, 2018. doi:10.1515/sem-2016-0024
España, A. D. M. (2023). Hit Makers: How to Succeed in an Age of Distraction. Journal of Economic Issues, 57(1), 319-325.
Gupta, Y., Agarwal, S., & Singh, P. (2020). To study the impact of instafamous celebrities on consumer buying behavior. Academy of Marketing Studies Journal, 24(2), 1-13.
Hanna, R., Rohm, A., & Crittenden, V. L. (2011). We’re all connected: The power of the social media ecosystem. Business horizons, 54(3), 265-273.
Hilbert, M., Vásquez, J., Halpern, D., Valenzuela, S., & Arriagada, E. (2017). One step, two step, network step? Complementary perspectives on communication flows in Twittered citizen protests. Social science computer review, 35(4), 444-461.
Hsu, M.-H., Tien, S.-W., Lin, H.-C., & Chang, C.-M. (2015). Understanding the roles of cultural differences and socio-economic status in social media continuance intention. Information Technology & People, 28(1), 224-241.
Hwang, J.-S., McMillan, S. J., & Lee, G. (2003). Corporate web sites as advertising: An analysis of function, audience, and message strategy. Journal of Interactive Advertising, 3(2), 10-23.
Jones, C., Svejenova, S., Pedersen, J. S., & Townley, B. (2016). Misfits, mavericks and mainstreams: Drivers of innovation in the creative industries. In (Vol. 37, pp. 751-768): Sage Publications Sage UK: London, England.
Jones, E. (2022). Gotye ft. Kimbra,“Somebody That I Used To Know”(2011). One-Hit Wonders: An Oblique History of Popular Music, 259.
Kopf, S. (2020). “Rewarding good creators”: corporate social media discourse on monetization schemes for content creators. Social Media+ Society, 6(4), 2056305120969877.
Laskey, H. A., Day, E., & Crask, M. R. (1989). Typology of main message strategies for television commercials. Journal of advertising, 18(1), 36-41.
Li, J., Zou, S., & Yang, H. (2019). How does “storytelling” influence consumer trust in we media advertorials? An investigation in China. Journal of Global Marketing, 32(5), 319-334.
Lim, H., & Childs, M. (2020). Visual storytelling on Instagram: branded photo narrative and the role of telepresence. Journal of Research in Interactive Marketing, 14(1), 33-50.
Livingstone, S. (2003). The changing nature of audiences: From the mass audience to the interactive media user. A companion to media studies, 337-359.
Luo, H., Cai, M., & Cui, Y. (2021). Spread of misinformation in social networks: Analysis based on Weibo tweets. Security and Communication Networks, 2021, 1-23.
Luo, X. (2002). Uses and gratifications theory and e-consumer behaviors: A structural equation modeling study. Journal of Interactive Advertising, 2(2), 34-41.
Maclnnis, D. J., Moorman, C., & Jaworski, B. J. (1991). Enhancing and measuring consumers’ motivation, opportunity, and ability to process brand information from ads. Journal of marketing, 55(4), 32-53.
Marwick, A. E. (2015). You may know me from youtube:(micro‐) celebrity in social media. A companion to celebrity, 333-350.
Meel, P., & Vishwakarma, D. K. (2020). Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities. Expert Systems with Applications, 153, 112986.
Mertens, J. (2023). Abridged anime and the distance in fan-dubbing: Interpreting culture through parody and fan appropriation. International Journal of Cultural Studies, 26(2), 182-199.
Miège, B., & Garnham, N. (1979). The cultural commodity. Media, culture & society, 1(3), 297-311.
Moor, P. J., Heuvelman, A., & Verleur, R. (2010). Flaming on youtube. Computers in Human Behavior, 26(6), 1536-1546.
Moore, A., Yang, K., & Kim, H. M. (2018). Influencer marketing: Influentials’ authenticity, likeability and authority in social media. Paper presented at the International Textile and Apparel Association Annual Conference Proceedings.
Odden, L. (2012). Optimize: How to attract and engage more customers by integrating SEO, social media, and content marketing: John Wiley & Sons.
OECD. (2016). Protecting Consumers In Peer Platform Markets. doi:doi:https://doi.org/10.1787/5jlwvz39m1zw-en
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of marketing research, 17(4), 460-469.
Pop, R.-A., Săplăcan, Z., Dabija, D.-C., & Alt, M.-A. (2022). The impact of social media influencers on travel decisions: The role of trust in consumer decision journey. Current Issues in Tourism, 25(5), 823-843.
Postmes, T., Spears, R., & Lea, M. (2000). The formation of group norms in computer‐mediated communication. Human communication research, 26(3), 341-371.
Puto, C. P., & Wells, W. D. (1984). Informational and transformational advertising: The differential effects of time. ACR North American Advances.
Schultz, D. (2007). Snackbyte: A view of the ecosystem. Retrieved October, 1, 2010.
Schulz von Thun, F. (1996). Miteinander reden/1 Störungen und Klärungen: Allgemeine Psychologie der Kommunikation. Miteinander reden.
Seo, M., Kim, J., & Yang, H. (2016). Frequent interaction and fast feedback predict perceived social support: Using crawled and self-reported data of Facebook users. Journal of Computer-Mediated Communication, 21(4), 282-297.
Solis, B. (2018). The 2018 State of Influence 2.0: The Path Forward. Retrieved from
Taiwan Digital Media and Marketing Association, D. (2020). Taiwan Digital Advertising Statistics Report 2019. Retrieved from
Tajvidi, M., Richard, M.-O., Wang, Y., & Hajli, N. (2020). Brand co-creation through social commerce information sharing: The role of social media. Journal of Business Research, 121, 476-486.
Toelle, J., & Sloboda, J. A. (2021). The audience as artist? The audience’s experience of participatory music. Musicae scientiae, 25(1), 67-91.
Vraga, E. K., & Tully, M. (2021). News literacy, social media behaviors, and skepticism toward information on social media. Information, Communication & Society, 24(2), 150-166.
Wielki, J. (2020). Analysis of the role of digital influencers and their impact on the functioning of the contemporary on-line promotional system and its sustainable development. Sustainability, 12(17), 7138.
Wilhelm, C., Stehle, H., & Detel, H. (2021). Digital visibility and the role of mutual interaction expectations: Reframing the journalist–audience relationship through the lens of interpersonal communication. New Media & Society, 23(5), 1004-1021.
Wu, T. (2017). The attention merchants: The epic scramble to get inside our heads: Vintage.
Xia, S. (2017). A study on the profit model of we media in China. Global Media Journal, 15(28), 1.
Xia, S. A., & Hafner, C. A. (2022). Engaging the online audience in the digital era: A multimodal analysis of engagement strategies in TED talk videos. Ibérica, 2021(42), 33-58.
Xie, R., Liu, D., Jia, Y., & Zhang, P. (2021). Influence of We Media Information Dissemination on Public Emotional Cognition and Behavior under Government Responsibility Constraint. Discrete Dynamics in Nature and Society, 2021, 1-14.
Xu, W. W., Park, J. Y., Kim, J. Y., & Park, H. W. (2016). Networked cultural diffusion and creation on YouTube: An analysis of YouTube memes. Journal of Broadcasting & Electronic Media, 60(1), 104-122.
Yen, T.-F. (2021). Expanding the Markets through We Media. 全球科技管理與教育期刊, 10(3), 12-23.
Yin, R. K. (1992). The case study method as a tool for doing evaluation. Current sociology, 40(1), 121-137.
Zhong, Y., Shapoval, V., & Busser, J. (2021). The role of parasocial relationship in social media marketing: testing a model among baby boomers. International Journal of Contemporary Hospitality Management, 33(5), 1870-1891.
李令儀. (2014). 文化中介者的中介與介入: 出版產業創意生產的內在矛盾. Taiwanese Sociology(28), 97-147.