簡易檢索 / 詳目顯示

研究生: 洪銘駿
Hung, Ming-Chun
論文名稱: 橙黃壺菌BL10中PFA基因多層次調控機制之探討:異構蛋白層級調控、營養應答性表現與轉錄起始點異質性
Multilevel Regulation of PFA Genes in Aurantiochytrium limacinum strain BL10: Insights into Isoform-level control, Nutrient Responsive Expression and Transcription Start Site Heterogeneity
指導教授: 陳逸民
Chen, Yi-Min
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 101
中文關鍵詞: 橙黃壺菌BL10高度不飽和脂肪酸多元不飽和脂肪酸合成酶泛素化轉錄後調控轉譯後調控
外文關鍵詞: Aurantiochytrium limacinum BL10, HUFA, polyunsaturated fatty acid synthase (PFA), ubiquitination, post-transcriptional regulation, post-translational regulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的研究中,已知Aurantiochytrium limacinum 品系BL10會透過轉錄、轉錄後及轉譯後層級的多層次調控,影響 polyunsaturated fatty acid synthase (Pfa) 蛋白的活性,來調節高度不飽和脂肪酸的生合成,同時已確認缺氮是誘發 pfa genes表現的重要因子,然而,尚有:1. 缺氮,出現第一波pfa genes上調後,為何還會有另一波的pfa genes上調? 2.無法確定Pfa1L及1S的比例變化究竟是只和泛素化有關,還是也和基因表現量的差異有關? 3. 無法確定三個pfa genes,乃至於其他油脂生合成重要基因在不同生長階段的轉錄起始點偏好 (影響轉錄後調控)。也因此,本研究的目的,即在釐清前述問題。首先,由培養期間培養基內總磷含量變化的分析,及與pfa基因表現量變化的比對,結果顯示磷濃度的波動與 pfa 基因表現上調的時序並未呈現明顯相關性。接著,由高專一性引子對的設計,搭配即時PCR方法,所確認出pfa1L和1S基因表現變化十分一致的結果,判定Pfa1L與1S蛋白質異構體比例的變化和轉錄調控無關。最後,發現mRNA樣品的完整度攸關能否成功利用RNA-ligation mediated RACE的方法標定出pfa,乃至於其他參與油脂生合成重要基因的轉錄起始點。後續將以RNA-sequencing的方法分析,由此確認前述基因在不同生長階段的轉錄起始點變化。

    Previous studies have shown that Aurantiochytrium limacinum strain BL10 regulates the biosynthesis of highly unsaturated fatty acids (HUFAs) through multilayered control of polyunsaturated fatty acid synthase (Pfa) proteins at the transcriptional, post-transcriptional, and post-translational levels. Nitrogen limitation has been identified as a major factor inducing pfa gene expression. However, several important questions remain unresolved. First, it is unclear why a second wave of pfa gene upregulation occurs after the initial response to nitrogen depletion. Second, although the ratio between the Pfa1L and Pfa1S protein isoforms is known to change, it remains uncertain whether this shift is solely due to ubiquitination or also influenced by differences in gene expression. Third, the transcription starts site (TSS) preferences of the three pfa genes and other lipid biosynthesis-related genes at different growth stages have not been characterized, leaving possible post-transcriptional regulatory mechanisms unexplored. To address these questions, this study first examined changes in total phosphorus concentration in the culture medium during cultivation and compared them with pfa gene expression patterns. The findings indicate that the timing of pfa gene upregulation does not show a clear correlation with phosphorus levels. Next, the use of highly specific primer sets, and quantitative real-time PCR revealed that the expression of pfa1L and pfa1S is highly consistent, indicating that the ratio of their protein isoforms is not regulated at the transcriptional level. Finally, it was found that RNA integrity is critical for successful identification of transcription start sites using RNA-ligation mediated RACE. RNA sequencing of RNA-ligated samples will be conducted to determine TSS variation of pfa and other lipid biosynthesis genes at different growth stages.

    中文摘要 II 英文摘要 III 誌謝 VII 目錄 VIII 圖目錄 XI 附表目錄 XIII 縮寫表 XIV 一、研究背景 1 1-1 破囊壺菌:具潛力的單細胞油脂生產微生物 1 1-2 橙黃壺菌的脂肪酸生合成途徑:特殊機制與關鍵調控因子 3 1-3 研究目標(Specific Aims) 7 二、材料與方法 8 2-1 實驗藥品、器材及設備 8 2-2 時序性分析:PFA1-L 與 PFA1-S 表現量變化 11 2-2-1 BL10的標準培養流程 11 2-2-2 RNA 萃取與cDNA製備 12 2-2-3 PFA1-L 與 PFA1-S 引子設計與專一性驗證 14 2-2-4 即時定量 PCR 分析 15 2-3 磷含量變化與 PFA 表現的關聯性分析 16 2-3-1 BL10的標準培養流程 16 2-3-2磷含量之標準曲線建立 16 2-3-3培養基中的磷含量檢測 17 2-4 不同萃取方法於 BL10 細胞中 RNA 完整性之分析與評估流程建立 18 2-4-1 BL10的標準培養流程 18 2-4-2 RNA品質評估 18 2-4-3 28S/18S rRNA 定量分析 (ImageJ) 21 2-4-4 建立之 RNA 萃取流程於 RLM-RACE 陽性對照系統中的應用與驗證 21 2-5 統計分析說明 23 三、結果 24 3-1 PFA1-L/PFA1-S不同生長階段的表現變化分析 24 3-2 培養基中磷含量的變化 25 3-3 建立適用於不同生長階段 BL10 的 RNA 萃取方法與品質評估結果 25 四、討論 33 參考文獻 37 圖表 40 附表 69

    吳玥慶. 在缺氮條件下,橙黃壺菌BL10之多元不飽和脂肪酸合成酶基因的轉錄後及轉譯後調控反應,國立成功大學生物科技與產業科學系碩士論文,2023。
    郭智宇. 橙黃壺菌BL10之多元不飽和脂肪酸合成酶的偵測與分析,國立成功大學生物科技與產業科學系碩士論文,2021。
    Abdel-Wahab, M.A., Elgorban, A.M., and Bahkali, A.H. Single cell oil of oleaginous marine microbes from Saudi Arabian mangroves as a potential feedstock for biodiesel production. Journal of King Saud University - Science 35, 102615, 2023.
    Arabolaza, A., Rodriguez, E., Altabe, S., Alvarez, H., and Gramajo, H. Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74, 2573-2582, 2008.
    Bellou, S., Triantaphyllidou, I.-E., Aggeli, D., Elazzazy, A.M., Baeshen, M.N., and Aggelis, G. Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current Opinion in Biotechnology 37, 24-35, 2016.
    Buono, S., Langellotti, A.L., Martello, A., Rinna, F., and Fogliano, V. Functional ingredients from microalgae. Food & function 5, 1669-1685, 2014.
    Chi, G., Xu, Y., Cao, X., Li, Z., Cao, M., Chisti, Y., and He, N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnology advances 55, 107897, 2022.
    Hayashi, S., Satoh, Y., Ujihara, T., Takata, Y., and Dairi, T. Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Sci Rep 6, 35441, 2016a.
    Hayashi, S., Satoh, Y., Ujihara, T., Takata, Y., and Dairi, T. Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Scientific Reports 6, 35441, 2016b.
    Heggeset, T.M.B., Ertesvåg, H., Liu, B., Ellingsen, T.E., Vadstein, O., and Aasen, I.M. Lipid and DHA-production in Aurantiochytrium sp. - Responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes. Sci Rep 9, 19470, 2019.
    Jiang, H., Zirkle, R., Metz, J.G., Braun, L., Richter, L., Van Lanen, S.G., and Shen, B. The Role of Tandem Acyl Carrier Protein Domains in Polyunsaturated Fatty Acid Biosynthesis. Journal of the American Chemical Society 130, 6336-6337, 2008.
    Khozin-Goldberg, I., and Cohen, Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67, 696-701, 2006.
    Li, F., Lin, Z., Krug, P.J., Catrow, J.L., Cox, J.E., and Schmidt, E.W. Animal FAS-like polyketide synthases produce diverse polypropionates. Proc Natl Acad Sci U S A 120, e2305575120, 2023.
    Lyu, L., Wang, Q., and Wang, G. Cultivation and diversity analysis of novel marine thraustochytrids. Marine Life Science & Technology 3, 263-275, 2021.
    Manikan, V., Kalil, M.S., and Hamid, A.A. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid. Scientific Reports 5, 8611, 2015.
    Molitor, H.R., Kim, G.Y., Hartnett, E., Gincley, B., Alam, M.M., Feng, J., Avila, N.M., Fisher, A., Hodaei, M., Li, Y., McGraw, K., Cusick, R.D., Bradley, I.M., Pinto, A.J., and Guest, J.S. Intensive Microalgal Cultivation and Tertiary Phosphorus Recovery from Wastewaters via the EcoRecover Process. Environ Sci Technol 58, 8803-8814, 2024.
    Morabito, C., Bournaud, C., Maës, C., Schuler, M., Cigliano, R.A., Dellero, Y., Maréchal, E., Amato, A., and Rébeillé, F. The lipid metabolism in thraustochytrids. Progress in Lipid Research 76, 101007, 2019.
    Ochsenreither, K., Glück, C., Stressler, T., Fischer, L., and Syldatk, C. Production Strategies and Applications of Microbial Single Cell Oils. Front Microbiol 7, 1539, 2016.
    Park, W.J., Kothapalli, K.S.D., Reardon, H.T., Lawrence, P., Qian, S.-B., and Brenna, J.T. A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids. Journal of Lipid Research 53, 1502-1512, 2012.
    Roy, R., Taourit, S., Zaragoza, P., Eggen, A., and Rodellar, C. Genomic structure and alternative transcript of bovine fatty acid synthase gene (FASN): comparative analysis of the FASN gene between monogastric and ruminant species. Cytogenetic and Genome Research 111, 65-73, 2005.
    Song, Y., Xuewei, Y., Shuangfei, L., Yanqing, L., Jo-Shu, C., and and Hu, Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Critical Reviews in Biotechnology 44, 618-640, 2024.
    Strassert, J.F.H., Jamy, M., Mylnikov, A.P., Tikhonenkov, D.V., and Burki, F. New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life. Molecular Biology and Evolution 36, 757-765, 2019.
    Stressler, T., Eisele, T., Rost, J., Haunschild, E.M., Kuhn, A., and Fischer, L. Production of polyunsaturated fatty acids by Mortierella alpina using submerse and solid state fermentation. Chemie Ingenieur Technik 85, 318-322, 2013.
    Sun, L., Ren, L., Zhuang, X., Ji, X., Yan, J., and Huang, H. Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresource Technology 159, 199-206, 2014.
    Wu, Y.C., Liu, T., Liu, C.N., Kuo, C.Y., Ting, Y.H., Wu, C.A., Shen, X.L., Wang, H.C., Chen, C.J., Renta, P.P., Chen, Y.L., Hung, M.C., and Chen, Y.M. Transcriptional, post-transcriptional, and post-translational regulation of polyunsaturated fatty acid synthase genes in Aurantiochytrium limacinum strain BL10: Responses to nitrogen starvation. Int J Biol Macromol 274, 133177, 2024.
    Xu, G., Paige, J.S., and Jaffrey, S.R. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nature Biotechnology 28, 868-873, 2010.
    Xue, Z., Li, S., Yu, W., Gao, X., Zheng, X., Yu, Y., and Kou, X. Research advancement and commercialization of microalgae edible oil: a review. Journal of the Science of Food and Agriculture 101, 5763-5774, 2021.
    Yang, H.-L., Lu, C.-K., Chen, S.-F., Chen, Y.-M., and Chen, Y.-M. Isolation and Characterization of Taiwanese Heterotrophic Microalgae: Screening of Strains for Docosahexaenoic Acid (DHA) Production. Marine Biotechnology 12, 173-185, 2010.
    Zeng, J., Zheng, Y., Yu, X., Yu, L., Gao, D., and Chen, S. Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Bioresource Technology 128, 385-391, 2013.

    無法下載圖示 校內:2030-08-23公開
    校外:2030-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE