簡易檢索 / 詳目顯示

研究生: 廖敏健
Liao, Min-Jian
論文名稱: 基於誤差自動校正與相位差近似處理技術於噪音環境語音訊號來源方向估測系統
Applying Angular Correction and Phase-Difference Approximation Techniques to Sound Source Localization System in Noisy Environment
指導教授: 王駿發
Wang, Jhing-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 56
中文關鍵詞: 相位差近似頻帶過濾訊號來源偵測
外文關鍵詞: phase-difference approximation, frequency-bin selection, direction of arrival
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來已有許多聲源辨位之研究論文出現,但綜觀目前聲源辨位系統,大多數的音源方向估測技術會因為訊號反射或噪音問題會造成各頻帶間之時間差不一致,因此本論文提出一種可應用於噪音環境下之音源方向估測技術,本系統包括四個部分:相位差近似單元、訊號矩陣重建單元、頻帶過濾單元及訊號來源偵測演算法,其中相位差近似技術利用多次一階線性回歸估測出理想的相位差曲線。訊號矩陣重建單元重建共變異矩陣,可有效地降低系統估測之誤差。頻帶過濾單元利用子空間演算法的概念,將訊號矩陣經由特徵值分解後求出訊號特徵值及噪聲特徵值比值,用以找出包含語音訊號之頻帶。
    在實驗結果證明本論文所提出之系統可有效降低系統估測之平均誤差至15度以下,且對於45度以下及135度以上之測試角度比傳統音源估測演算法可以更有效的減少平均誤差達20度。

    In the recent years, Direction of Arrival (DOA) techniques have been intensively studied. However, noise and reverberation effects still cause huge problems to DOA research. In order to alleviate such problems, we propose a pre-processing method that can solve the reverberation and noise problems with only two microphones. There are four parts in our propose system: Linear phase-difference approximation, covariance matrix reconstruction, frequency-bin selection, and DOA algorithm.
    First, the linear phase-difference approximation technique and covariance matrix reconstruction can initially solve reverberation and noise influence, and adjust the original covariance matrix to a better one. At the next stage, the frequency-bin selection is used to filter those frequencies, which contain more noise information, and reserves frequency bands for DOA algorithm.
    The experimental results prove that the proposed system has good performance with different Signal-to-Noise Ratio (SNR) signal, and the estimation error can be reduced by 20 degrees. This demonstrates the efficacy and feasibility of our proposed methods.

    CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.2 OBJECTIVES OF THE THESIS 3 1.3 ORGANIZATION OF THE THESIS 4 CHAPTER 2 PREVIOUS WORKS FOR DOA 5 2.1 INTRODUCTION OF ARRAY SIGNAL PROCESSING 5 2.2 MICROPHONE AND MICROPHONE ARRAY 7 2.2.1 Characteristics of microphone 7 2.2.2 Characteristics of microphone array 10 2.3 CHARACTERISTICS OF ARRAY 12 2.3.1 ULA spatial response 12 2.3.2 Grating lobe 14 2.3.3 Beam width and broadening effect 17 2.4 DOA ALGORITHMS 20 2.4.1 Time domain 21 2.4.1.1 Average Magnitude Difference Function (AMDF) 21 2.4.2 Frequency domain 24 2.4.2.1 Generalized Cross Correlation (GCC) 25 2.4.2.2 Minimum Variance Distortionless Response (MVDR) 28 2.4.2.3 Multiple Signal Classification (MUSIC) 30 CHAPTER 3 FRAMEWORK OF THE PROPOSED SYSTEM 33 3.1 THE PROPOSED SYSTEM OVERVIEW 34 3.2 LINEAR PHASE-DIFFERENCE APPROXIMATION 35 3.3 COVARIANCE MATRIX RECONSTRUCTION 40 3.4 FREQUENCY-BIN SELECTION 41 CHAPTER 4 EXPERIMENTAL RESULTS AND COMPARISONS 43 4.1 EXPERIMENTAL ENVIRONMENT AND SETUP 43 4.1.1 Microphone 43 4.1.2 Pre-amplifier circuit 44 4.1.1 Environment setting 45 4.2 EXPERIMENTAL RESULTS AND COMPARISONS 47 4.2.1 Interface of our system 47 4.3.2 Expression of accuracy 47 4.3.2 Experimental results and comparisons for proposed system 48 CHAPTER 5 CONCLUSION AND FUTURE WORKS 54 REFERENCES 55

    [1]. Harry L. Van Trees, Detection, estimation, and modulation theory, John Wiley and Sons, 2001,
    [2]. M. Ross, H. Shaffer, A. Cohen, R. Freudberg, and H. Manley, “Average magnitude difference function pitch extractor,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.22, pp.353-362, Oct. 1974.
    [3]. A. Fertner and A. Sjolund, “Comparison of various time delay estimation methods by computer simulation,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.34, pp.1329-1330, Oct. 1986.
    [4]. C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.24, pp.320 – 327, Aug. 1976.
    [5]. M.S. Brandstein and H.F. Silverman, “A robust method for speech signal time-delay estimation in reverberant rooms,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol.1, pp.375-378, April 1997.
    [6]. P. Aarabi, G. Shi, M.M. Shanechi, and S.A.Rabi, PHAES-BASED SPEECH PROCESSING, 2006.
    [7]. Schmidt, R.; “Multiple emitter location and signal parameter estimation,” Mar 1986.
    [8]. Roy, R., Kailath, T.; “ESPRIT-estimation of signal parameters via rotational invariance techniques,” July 1989.
    [9]. Microphone Array Signal Processing - J. Benesty, J. Chen, Y. Huang (Springer, 2008) WW
    [10]. T. J. Shan and T. Kailath, “Adaptive beamforming for coherent signals and interference,” IEEE Trans. On Acoustics, Speech, and Signal Processing, vol. 38, no. 3, pp. 527-536, June 1985
    [11]. R. A. Monzigo and T.W. Miller, “Introduction to adaptive array,” New York, Wiley 1980
    [12]. http://en.wikipedia.org/wiki/Wiki
    [13]. http://www.totalvenue.com.au/articles/microphones/microphones.html
    [14]. http://hyperphysics.phy-astr.gsu.edu/hbase/audio/mic.html
    [15]. Victor J. Marrero-Fontáez, “Dual Polarized microstrip antenna array for the off-the grid radar,” master thesis in university of Puerto Rico 2007.
    [16]. T. J Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-arrival estimator of coherent signals,” IEEE Trans. On ASSP, vol.33, no.4, pp.806-811, Aug. 1985.
    [17]. S. U. Pillai, B. H. Kwan, “Forward/Backward spatial smoothing techniques for coherent signal identification,” IEEE Trans. On ASSP, vol.37, on.1, pp.8-15, Jan.1989
    [18]. J. A. Cadzow, “A high resolution direction-of-arrival algorithm for narrowband coherent and incoherent sources,” IEEE Trans. On ASSP, vol.36, no.7, pp.965-979, July 1988.
    [19]. J. M. Yang, M. S. Choi, H. G. Kang, “Two-channel DOA estimation usign frequency selective music algorithm with a phase compensation in reverberant room,” Sensor Array and Multichannel Signal Processing Workshop, 2008. SAM 2008. 5th IEEE Page(s): 365 – 368 ,2008.
    [20]. Danfeng Li, Stephen E. Levinson: A Linear Phase Unwrapping Method for Binaural Sound Source Localization on a Robot. ICRA 2002: 19-23

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE