簡易檢索 / 詳目顯示

研究生: 陳毅玹
Chen, Yi-Hsuan
論文名稱: 適用於具有內部狀態延遲連結之廣義未知大尺度資料取樣線性系統且具有閉迴路解耦特性的分散式模型化線性觀測器與輸入飽和軌跡追蹤器
Decentralized Modeling and Linear Observers/Input Constraint Trackers for a More General Class of Unknown Large-scale Interconnected Sampled-data Linear Systems with State Delay and Closed-loop Decoupling Property
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 77
中文關鍵詞: 觀測器/卡爾曼濾波器鑑別數位再設計線性二次式數位軌跡追蹤器輸入飽和限制
外文關鍵詞: Observer/Kalman filter identification, digital redesign, linear quadratic digital tracker, input constraint
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種適用於具有內部狀態延遲連結之廣義未知大尺度資料取樣線性系統,且其具有閉迴路解耦特性的分散式模型化線性觀測器與輸入飽和軌跡追蹤器。首先,利用離線的觀測器/卡爾曼濾波器鑑別方法計算出具有內部狀態延遲連結之廣義未知大尺度資料取樣線性系統的適當階數(或低階)的分散式線性觀測器。然後此觀測器可以利用具有高增益性質的數位再設計方法,進一步改善模組的誤差。此外針對資料取樣系統,提出一個具有高增益的數位再設計觀測型線性二次式數位軌跡追蹤器,且提供良好的軌跡追蹤效果,而系統具有閉迴路解耦特性。最後,為了降低控制力來滿足輸入飽和限制的需要,提出修正型的線性二次式數位軌跡追蹤器。藉此控制力可以有效的被壓縮,而且不會損失原本良好的軌跡追蹤效果。

    Decentralized modeling and linear observers/input constraint trackers for a more general class of unknown large-scale interconnected sampled-data linear systems with state delay and closed-loop decoupling property are proposed in this thesis. First, the off-line observer/Kalman filter identification (OKID) method is used to determine the appropriate (low-) order decentralized linear observers for the unknown large-scale interconnected sampled-data linear system with state delay. Then, a digital redesign approach with the high-gain property is applied to overcome the modeling error of the above observer effectively. Moreover, a digital-redesign observer-based linear quadratic digital tracker with high-gain property for the sampled-data system is presented, and it provides high performance on trajectory tracking with the closed-loop decoupling property. Finally, to reduce the magnitude of control input, which is caused by the high gain property to fit the requirement of the input constraint, the modified linear quadratic digital tracker (LQDT) is proposed. And the control input can be compressed effectively without losing the original high performance of tracking much.

    摘要 I Abstract II Acknowledgement III List of Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1-1 Chapter 2 Problem Description 2-1 Chapter 3 Observer/Kalman Filter Identification 3-1 3.1 Basic observer equation 3-2 3.2 Computation of Markov parameters 3-4 3.2.1 System Markov parameters 3-4 3.2.2 Observer gain Markov parameters 3-4 3.3 Eigensystem realization algorithm 3-5 3.4 Relationship to a Kalman filter 3-7 Chapter 4 Prediction-based Digital Redesign 4-1 4.1 Observer-based linear quadratic analog tracker design 4-2 4.2 Digital redesign of the observer-based linear quadratic analog tracker 4-4 Chapter 5 Digital-redesign Tracker with Input Constraints 5-1 5.1 Modified LQAT design under input constraints 5-2 5.2 Modified digital redesign of LQAT under input constraints 5-5 5.3 Design procedure of the modified digital redesign of LQAT under input constraints 5-7 Chapter 6 Design Procedure 6-1 Chapter 7 An Illustrative Example 7-1 Chapter 8 Conclusion 8-1 References R-1

    [1] H. S. Wu, “Decentralized robust-control for a class of large-scale interconnected systems with uncertainties,”International Journal of Systems Science, vol. 20, pp. 2597-2608, 1989.
    [2] M. Jamshidi, Large-Scale Systems: Modeling, Control, and Fuzzy Logic. New York: Prentice-Hall, 1996.
    [3] P. A. Ioannou and J. Sun, Robust Adaptive Control. New Jersey: Prentice Hall, 1996.
    [4] Z. Y. Wang, L. H. Huang, and Y. N. Wang, “Robust decentralized adaptive control for a class of uncertain neural networks with time-varying delays,” Applied Mathematics and Computation, vol. 215, pp. 4154-4163, Feb. 2010.
    [5] K. S. Narendra and N. O. Oleng, “Exact output tracking in decentralized adaptive control systems,” IEEE Transactions on Automatic Control, vol. 47, pp. 390- 395, 2002.
    [6] H. S. Wu, “Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the interconnections,” IEEE Transactions on Automatic Control, vol. 47, pp. 1745- 1751, 2002.
    [7] X. D. Ye and J. Huang, “Decentralized adaptive output regulation for a class of large-scale nonlinear systems,” IEEE Transactions on Automatic Control, vol. 48, pp. 276-281, 2003.
    [8] J. Zhou and C. Y. Wen, “Decentralized backstepping adaptive output tracking of interconnected nonlinear systems,” IEEE Transactions on Automatic Control, vol. 53, pp. 2378-2384, 2008.
    [9] J. S. H. Tsai, N. T. Hu, P. C. Yang, S. M. Guo, and L. S. Shieh, “Modeling of decentralized linear observer and tracker for a class of unknown interconnected large-scale sampled-data nonlinear system with closed- loop decoupling property,” Computers and mathematics with applications, 2010(accepted for publication, in galley, to appear in June).
    [10] J. N. Juang, Applied system identification. New Jersey: Prentice-Hall, 1994.
    [11] J. S. H. Tsai, T. H. Chien, S. M. Guo, Y. P. Chang, and L. S. Shieh, “State-space self-tuning control for stochastic fractional-order chaotic systems,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 54, pp. 632-642, Mar. 2007.
    [12] F. L. Lewis and V. L. Syrmos, Optimal Control. New York: John Wiley & Sons, 1995.
    [13] S. M. Guo, L. S. Shieh, G. R. Chen, and C. F. Lin, “Effective chaotic orbit tracker: A prediction- based digital redesign approach,” IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 47, pp. 1557-1570, 2000.
    [14] S. M. Guo and Z. H. Peng, “An observer-based decentralized tracker for sampled-data systems: an evolutionary programming approach,” International Journal of General Systems, vol. 34, pp. 421-449,2005.
    [15] J. S. H. Tsai, Y. Y. Du, S. M. Guo, C. W. Chen, and L. S. Shieh, “Optimal anti-windup digital redesign of MIMO control systems under input constraints,” IET Control Theory & Applications, 2010. (2010 in revision).
    [16] S. Tarbouriech and M. Turner, “Anti-windup design: an overview of some recent advances and open problems,” IET Control Theory and Applications, vol. 3, pp. 1- 19, Jan 2009.
    [17] L. Zaccarian and A. R. Teel, “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49, pp. 2055- 2061, 2004.
    [18] F. Wu and B. Lu, “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems & Control Letters, vol. 52, pp. 305-322, 2004.
    [19] P. Y. Tiwari, E. R. Mulder, and M. V. Kothare, “Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52, pp. 2341-2345, 2007.
    [20] T. Hu, A. R. Teel, and L. Zaccarian, “Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance,” Automatica, vol. 44, pp. 512-519, 2008.
    [21] S. K. Solmaz and J. Faryar, “Modified anti-windup compensators for stable plants,” IEEE Transactions on Automatic Control, vol. 54, pp. 1934-1939, 2009.

    下載圖示 校內:2012-07-20公開
    校外:2012-07-20公開
    QR CODE