簡易檢索 / 詳目顯示

研究生: 蘇意婷
Su, Yi-Ting
論文名稱: 探討亨廷頓相關蛋白40對於清除突變型亨廷頓蛋白和神經軸索生長的影響
Effects of HAP40 on clearance of mutant huntingtin and neurite outgrowth
指導教授: 何盧勳
Her, Lu-Shiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 亨廷頓蛋白亨廷頓相關蛋白40泛素神經軸索生長
外文關鍵詞: Huntingtin, Huntingtin associated protein 40, Ubiquitin, Neurite Outgrowth
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 亨廷頓舞蹈症是一種顯性遺傳的神經退化性疾病,造成疾病的主因是亨廷頓蛋白基因發生突變,導致亨廷頓蛋白的多聚麩醯胺過度擴張,最後因異常的蛋白質堆積使得腦部神經細胞死亡。亨廷頓蛋白參與許多細胞內的調控,包含微管軸突的運輸,其功能會受到與亨廷頓結合蛋白和亨廷頓相關蛋白相互作用而影響,亨廷頓相關蛋白40與微管有相互作用,另外與亨廷頓蛋白可以直接結合,影響早期內噬體對細胞骨架親和性,調節其運輸;此外在亨廷頓舞蹈症模式小鼠的紋狀體細胞以及患者腦部組織中內生性亨廷頓相關蛋白40蛋白大量表現。因此,本篇的研究目的主要是想要探討亨廷頓相關蛋白40是否參與亨廷頓舞蹈症致病機轉以及其他細胞功能的調控。結果發現過量表現亨廷頓相關蛋白40促使由突變型亨廷頓蛋白形成聚集體的數目增加,且有形成聚集體的小鼠神經母細胞瘤細胞增多。進一步了解聚集體增加是否因蛋白質降解作用損害,結果顯示亨廷頓相關蛋白40過量表現使得泛素化蛋白質增加,且由離胺酸48形成的多泛素鏈累積,此外也發現內生性p62蛋白量和p62 的點狀數目都有增加的現象。亨廷頓相關蛋白40表現也造成高基氏體的結構較擴散。在小鼠神經母細胞瘤細胞株和大鼠腎上腺嗜鉻細胞瘤細胞株的細胞穩定株誘導亨廷頓相關蛋白40表現促使有神經軸索生長的細胞增加。綜合以上結果指出,亨廷頓相關蛋白40促進突變型亨廷頓蛋白的聚集體形成,並促使泛素化蛋白的堆積,另外亨廷頓相關蛋白40表現使得高基氏體的型態改變,進一步推測可能影響神經軸索生長。

    Huntington's disease (HD) is a dominant inherited neurodegenerative disorder caused by CAG repeats encoding polyglutamine (polyQ) expansion within the first exon of huntingtin (htt). The amino-terminal fragments of mutant huntingtin accumulate and form aggregates in neuronal nuclei and cytoplasm, primarily in the striatum and cortex of HD patients. It is still unclear whether aggregates are protective or detrimental for cell viability. Htt is enriched in the brain where it associates with microtubules and vesicles, such as Golgi apparatus, and mitochondria. HAP40 is a 40-kDa huntingtin-associated protein. Like huntingtin, HAP40 associates with microtubules and shuttles in axon. Previous studies have shown the huntingtin–HAP40 complex is an effector of Rab5 that regulates the dynamics of early endosomes through a switch from microtubules to F-actin. Endogenous HAP40 protein levels were increased in STHdhQ111 striatal cells and fibroblasts and brain tissue from human HD patients. Thus, up-regulation of HAP40 protein level might contribute to the selective neuropathology of HD. Previous studies had shown that aggregates of mutant N-Htt are enriched for components of the protein quality control machinery, such as ubiquitin, proteasome subunits, and chaperones. We found that overexpression of HAP40 promotes aggregation of mutant huntingtin in N2a cell. To investigate whether HAP40 affects ubiquitin proteasome system, we transfected N2a cell with HAP40, ubiquitin and N-Htt (WT or mutant). Overexpression of HAP40 enhances accumulation of polyubiquitinated protein. Depletion of Htt in HeLa cells results in Golgi disruption, similar to the effects by depletion of dynein and dynactin. In stable N2a cell lines expressing HAP40, the structures of Golgi were disrupted. During neurite outgrowth, actin and microtubules dynamics and membrane traffic play a role in initiation and elongation of neurites. In PC12 and N2a stable cell lines expressing HAP40, we found that HAP40 increase the percentage of cells with neurite.

    中文摘要 1 Abstract 3 致謝 5 目錄 6 圖目錄 9 縮寫表 10 前言 11 一、亨廷頓舞蹈症 (Huntington's disease, HD) 11 二、亨廷頓蛋白 (Huntingtin, Htt) 11 三、亨廷頓相關蛋白40 (Huntingtin associated protein 40, HAP40) 13 四、聚集體 (aggregates)與UPS (ubiquitin proteosome system) 14 五、神經軸索生長(neurite outgrowth) 16 實驗目的 18 材料與方法 19 一、細胞培養 19 二、轉染作用 (Transfection) 22 三、西方墨點法 (Western blot assay) 23 四、細胞免疫螢光染色 (Immunofluorescence staining) 26 五、篩選細胞穩定株 (stable cell lines screening) 27 六、Neurite outgrowth 28 七、Filter trap assay 29 八、統計方法(Statistics) 30 九、抗體(antibodies) 30 結果 31 一、HAP40抗體的專一性鑑定 31 二、誘導型的HAP40細胞穩定株 32 三、過量表現HAP40 促進突變型亨廷頓蛋白聚合體形成 33 四、過量表現HAP40 使得泛素化作用的蛋白增加 34 五、HAP40會增加p62蛋白質表現量與p62 puncta的數目 36 六、HAP40破壞高基氏體的型態 37 七、HAP40影響neurite outgrowth 38 討論 40 參考文獻 44

    Altar, C.A., N. Cai, T. Bliven, M. Juhasz, J.M. Conner, A.L. Acheson, R.M. Lindsay, and S.J. Wiegand. 1997. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature. 389:856-860.
    Andrew, S.E., Y.P. Goldberg, B. Kremer, H. Telenius, J. Theilmann, S. Adam, E. Starr, F. Squitieri, B. Lin, M.A. Kalchman, and et al. 1993. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature genetics. 4:398-403.
    Arevalo, J.C., and M.V. Chao. 2005. Axonal growth: where neurotrophins meet Wnts. Current opinion in cell biology. 17:112-115.
    Bence, N.F., R.M. Sampat, and R.R. Kopito. 2001. Impairment of the ubiquitin-proteasome system by protein aggregation. Science (New York, N.Y.). 292:1552-1555.
    Bennett, E.J., N.F. Bence, R. Jayakumar, and R.R. Kopito. 2005. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Molecular cell. 17:351-365.
    Bennett, E.J., T.A. Shaler, B. Woodman, K.Y. Ryu, T.S. Zaitseva, C.H. Becker, G.P. Bates, H. Schulman, and R.R. Kopito. 2007. Global changes to the ubiquitin system in Huntington's disease. Nature. 448:704-708.
    Bett, J.S., G.M. Goellner, B. Woodman, G. Pratt, M. Rechsteiner, and G.P. Bates. 2006. Proteasome impairment does not contribute to pathogenesis in R6/2 Huntington's disease mice: exclusion of proteasome activator REGgamma as a therapeutic target. Human molecular genetics. 15:33-44.
    Bjorkoy, G., T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn, H. Stenmark, and T. Johansen. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. The Journal of cell biology. 171:603-614.
    Block-Galarza, J., K.O. Chase, E. Sapp, K.T. Vaughn, R.B. Vallee, M. DiFiglia, and N. Aronin. 1997. Fast transport and retrograde movement of huntingtin and HAP 1 in axons. Neuroreport. 8:2247-2251.
    Bowman, A.B., S.Y. Yoo, N.P. Dantuma, and H.Y. Zoghbi. 2005. Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Human molecular genetics. 14:679-691.
    Canals, J.M., J.R. Pineda, J.F. Torres-Peraza, M. Bosch, R. Martin-Ibanez, M.T. Munoz, G. Mengod, P. Ernfors, and J. Alberch. 2004. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24:7727-7739.
    Caviston, J.P., and E.L. Holzbaur. 2009. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends in cell biology. 19:147-155.
    Caviston, J.P., J.L. Ross, S.M. Antony, M. Tokito, and E.L. Holzbaur. 2007. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proceedings of the National Academy of Sciences of the United States of America. 104:10045-10050.
    Charles, V., E. Mezey, P.H. Reddy, A. Dehejia, T.A. Young, M.H. Polymeropoulos, M.J. Brownstein, and D.A. Tagle. 2000. Alpha-synuclein immunoreactivity of huntingtin polyglutamine aggregates in striatum and cortex of Huntington's disease patients and transgenic mouse models. Neuroscience letters. 289:29-32.
    Chong, S.S., E. Almqvist, H. Telenius, L. LaTray, K. Nichol, B. Bourdelat-Parks, Y.P. Goldberg, B.R. Haddad, F. Richards, D. Sillence, C.R. Greenberg, E. Ives, G. Van den Engh, M.R. Hughes, and M.R. Hayden. 1997. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Human molecular genetics. 6:301-309.
    Colin, E., D. Zala, G. Liot, H. Rangone, M. Borrell-Pagès, X.J. Li, F. Saudou, and S. Humbert. 2008. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. The EMBO journal. 27:2124-2134.
    Cooper, J.K., G. Schilling, M.F. Peters, W.J. Herring, A.H. Sharp, Z. Kaminsky, J. Masone, F.A. Khan, M. Delanoy, D.R. Borchelt, V.L. Dawson, T.M. Dawson, and C.A. Ross. 1998. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Human molecular genetics. 7:783-790.
    Cosker, K.E., S.L. Courchesne, and R.A. Segal. 2008. Action in the axon: generation and transport of signaling endosomes. Current opinion in neurobiology. 18:270-275.
    da Silva, J.S., and C.G. Dotti. 2002. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nature reviews. Neuroscience. 3:694-704.
    de la Monte, S.M., J.P. Vonsattel, and E.P. Richardson, Jr. 1988. Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington's disease. Journal of neuropathology and experimental neurology. 47:516-525.
    del Toro, D., J. Alberch, F. Lazaro-Dieguez, R. Martin-Ibanez, X. Xifro, G. Egea, and J.M. Canals. 2009. Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Molecular biology of the cell. 20:1478-1492.
    DiFiglia, M., E. Sapp, K.O. Chase, S.W. Davies, G.P. Bates, J.P. Vonsattel, and N. Aronin. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science (New York, N.Y.). 277:1990-1993.
    Engelender, S., A.H. Sharp, V. Colomer, M.K. Tokito, A. Lanahan, P. Worley, E.L. Holzbaur, and C.A. Ross. 1997. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Human molecular genetics. 6:2205-2212.
    Ferrer, I., E. Goutan, C. Marin, M.J. Rey, and T. Ribalta. 2000. Brain-derived neurotrophic factor in Huntington disease. Brain research. 866:257-261.
    Finkbeiner, S., and S. Mitra. 2008. The ubiquitin-proteasome pathway in Huntington's disease. TheScientificWorldJournal. 8:421-433.
    Gauthier, L.R., B.C. Charrin, M. Borrell-Pages, J.P. Dompierre, H. Rangone, F.P. Cordelieres, J. De Mey, M.E. MacDonald, V. Lessmann, S. Humbert, and F. Saudou. 2004. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 118:127-138.
    Goldberg, A.L. 2003. Protein degradation and protection against misfolded or damaged proteins. Nature. 426:895-899.
    Greene, L.A., and A.S. Tischler. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America. 73:2424-2428.
    Gutekunst, C.A., S.H. Li, H. Yi, J.S. Mulroy, S. Kuemmerle, R. Jones, D. Rye, R.J. Ferrante, S.M. Hersch, and X.J. Li. 1999. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19:2522-2534.
    Harper, P.S. 1996. Huntington's disease, W.B. Saunders, London.
    He, Y., F. Francis, K.A. Myers, W. Yu, M.M. Black, and P.W. Baas. 2005. Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. The Journal of cell biology. 168:697-703.
    Heerssen, H.M., M.F. Pazyra, and R.A. Segal. 2004. Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nature neuroscience. 7:596-604.
    Huang, Q., and M.E. Figueiredo-Pereira. 2010. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis : an international journal on programmed cell death. 15:1292-1311.
    Ikeda, F., and I. Dikic. 2008. Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO reports. 9:536-542.
    Imarisio, S., J. Carmichael, V. Korolchuk, C.W. Chen, S. Saiki, C. Rose, G. Krishna, J.E. Davies, E. Ttofi, B.R. Underwood, and D.C. Rubinsztein. 2008. Huntington's disease: from pathology and genetics to potential therapies. The Biochemical journal. 412:191-209.
    James Velier, M.K., Cordula Schwarz, Tae Wan Kim, Ellen Sapp, Kathryn Chase, Neil Aronin, Marian DiFiglia. 1998. Wild-Type and Mutant Huntingtins Function in Vesicle Trafficking in the Secretory and Endocytic Pathways. Experimental Neurology. 152:34-40.
    Jana, N.R., M. Tanaka, G. Wang, and N. Nukina. 2000. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Human molecular genetics. 9:2009-2018.
    Jullien, J., V. Guili, E.A. Derrington, J.L. Darlix, L.F. Reichardt, and B.B. Rudkin. 2003. Trafficking of TrkA-green fluorescent protein chimerae during nerve growth factor-induced differentiation. The Journal of biological chemistry. 278:8706-8716.
    Kaminosono, S., T. Saito, F. Oyama, T. Ohshima, A. Asada, Y. Nagai, N. Nukina, and S. Hisanaga. 2008. Suppression of mutant Huntingtin aggregate formation by Cdk5/p35 through the effect on microtubule stability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28:8747-8755.
    Kapfhammer, J.P., and M.E. Schwab. 1992. Modulators of neuronal migration and neurite growth. Current opinion in cell biology. 4:863-868.
    Kim, Y.J., Y. Yi, E. Sapp, Y. Wang, B. Cuiffo, K.B. Kegel, Z.H. Qin, N. Aronin, and M. DiFiglia. 2001. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proceedings of the National Academy of Sciences of the United States of America. 98:12784-12789.
    Laketa, V., J.C. Simpson, S. Bechtel, S. Wiemann, and R. Pepperkok. 2007. High-content microscopy identifies new neurite outgrowth regulators. Molecular biology of the cell. 18:242-252.
    Levinson, B., J.R. Bermingham, Jr., A. Metzenberg, S. Kenwrick, V. Chapman, and J. Gitschier. 1992. Sequence of the human factor VIII-associated gene is conserved in mouse. Genomics. 13:862-865.
    Li, S.H., A.L. Cheng, H. Li, and X.J. Li. 1999. Cellular defects and altered gene expression in PC12 cells stably expressing mutant huntingtin. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19:5159-5172.
    Li, X., C.E. Wang, S. Huang, X. Xu, X.J. Li, H. Li, and S. Li. 2010. Inhibiting the ubiquitin-proteasome system leads to preferential accumulation of toxic N-terminal mutant huntingtin fragments. Human molecular genetics. 19:2445-2455.
    Liot, G., D. Zala, P. Pla, G. Mottet, M. Piel, and F. Saudou. 2013. Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33:6298-6309.
    Marcy E. MacDonald, C.M.A., Mabel P. Duyao, Richard H. Myers, Carol Lin, Lakshmi Srinidhi, Glenn Barnes, Sherryl A. Taylor, Marianne James, Nicolet Groot, Heather MacFarlane, Barbara Jenkins, Mary Anne Anderson, Nancy S. Wexler, James F. Gusella, . 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell. 72: 971–983.
    Maynard, C.J., C. Bottcher, Z. Ortega, R. Smith, B.I. Florea, M. Diaz-Hernandez, P. Brundin, H.S. Overkleeft, J.Y. Li, J.J. Lucas, and N.P. Dantuma. 2009. Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. Proceedings of the National Academy of Sciences of the United States of America. 106:13986-13991.
    Metzler, M., V. Legendre-Guillemin, L. Gan, V. Chopra, A. Kwok, P.S. McPherson, and M.R. Hayden. 2001. HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. The Journal of biological chemistry. 276:39271-39276.
    Milman, P., and J. Woulfe. 2013. A novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. The Journal of comparative neurology.
    Muchowski, P.J., K. Ning, C. D'Souza-Schorey, and S. Fields. 2002. Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proceedings of the National Academy of Sciences of the United States of America. 99:727-732.
    Nagaoka, U., K. Kim, N.R. Jana, H. Doi, M. Maruyama, K. Mitsui, F. Oyama, and N. Nukina. 2004. Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. Journal of neurochemistry. 91:57-68.
    Naylor, J.A., D. Buck, P. Green, H. Williamson, D. Bentley, and F. Giannelli. 1995. Investigation of the factor VIII intron 22 repeated region (int22h) and the associated inversion junctions. Human molecular genetics. 4:1217-1224.
    Nielsen, E., F. Severin, J.M. Backer, A.A. Hyman, and M. Zerial. 1999. Rab5 regulates motility of early endosomes on microtubules. Nature cell biology. 1:376-382.
    Pal, A., F. Severin, S. Hopfner, and M. Zerial. 2008. Regulation of endosome dynamics by Rab5 and Huntingtin-HAP40 effector complex in physiological versus pathological conditions. Methods in enzymology. 438:239-257.
    Pal, A., F. Severin, B. Lommer, A. Shevchenko, and M. Zerial. 2006. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. The Journal of cell biology. 172:605-618.
    Pankiv, S., T.H. Clausen, T. Lamark, A. Brech, J.A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, and T. Johansen. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. The Journal of biological chemistry. 282:24131-24145.
    Peters, M.F., and C.A. Ross. 2001. Isolation of a 40-kDa Huntingtin-associated protein. The Journal of biological chemistry. 276:3188-3194.
    Qin, Z.H., and Z.L. Gu. 2004. Huntingtin processing in pathogenesis of Huntington disease. Acta pharmacologica Sinica. 25:1243-1249.
    Ravikumar, B., C. Vacher, Z. Berger, J.E. Davies, S. Luo, L.G. Oroz, F. Scaravilli, D.F. Easton, R. Duden, C.J. O'Kane, and D.C. Rubinsztein. 2004. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature genetics. 36:585-595.
    Rong, J., J.R. McGuire, Z.H. Fang, G. Sheng, J.Y. Shin, S.H. Li, and X.J. Li. 2006. Regulation of intracellular trafficking of huntingtin-associated protein-1 is critical for TrkA protein levels and neurite outgrowth. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26:6019-6030.
    Sarkar, S., and D.C. Rubinsztein. 2008. Huntington's disease: degradation of mutant huntingtin by autophagy. The FEBS journal. 275:4263-4270.
    Scherzinger, E., R. Lurz, M. Turmaine, L. Mangiarini, B. Hollenbach, R. Hasenbank, G.P. Bates, S.W. Davies, H. Lehrach, and E.E. Wanker. 1997. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell. 90:549-558.
    Song, C., G. Perides, and Y.F. Liu. 2002. Expression of full-length polyglutamine-expanded Huntingtin disrupts growth factor receptor signaling in rat pheochromocytoma (PC12) cells. The Journal of biological chemistry. 277:6703-6707.
    Strehlow, A.N., J.Z. Li, and R.M. Myers. 2007. Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Human molecular genetics. 16:391-409.
    Tsaneva-Atanasova, K., A. Burgo, T. Galli, and D. Holcman. 2009. Quantifying neurite growth mediated by interactions among secretory vesicles, microtubules, and actin networks. Biophysical journal. 96:840-857.
    Tukamoto, T., N. Nukina, K. Ide, and I. Kanazawa. 1997. Huntington's disease gene product, huntingtin, associates with microtubules in vitro. Brain research. Molecular brain research. 51:8-14.
    Velier, J., M. Kim, C. Schwarz, T.W. Kim, E. Sapp, K. Chase, N. Aronin, and M. DiFiglia. 1998. Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp Neurol. 152:34-40.
    Venkatraman, P., R. Wetzel, M. Tanaka, N. Nukina, and A.L. Goldberg. 2004. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Molecular cell. 14:95-104.
    Verhoef, L.G., K. Lindsten, M.G. Masucci, and N.P. Dantuma. 2002. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Human molecular genetics. 11:2689-2700.
    Waelter, S., A. Boeddrich, R. Lurz, E. Scherzinger, G. Lueder, H. Lehrach, and E.E. Wanker. 2001. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Molecular biology of the cell. 12:1393-1407.
    Wang, J., C.E. Wang, A. Orr, S. Tydlacka, S.H. Li, and X.J. Li. 2008. Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice. The Journal of cell biology. 180:1177-1189.
    Wellington, C.L. 1998. Caspase Cleavage of Gene Products Associated with Triplet Expansion Disorders Generates Truncated Fragments Containing the Polyglutamine Tract. Journal of Biological Chemistry. 273:9158-9167.
    Zuccato, C., A. Ciammola, D. Rigamonti, B.R. Leavitt, D. Goffredo, L. Conti, M.E. MacDonald, R.M. Friedlander, V. Silani, M.R. Hayden, T. Timmusk, S. Sipione, and E. Cattaneo. 2001. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science (New York, N.Y.). 293:493-498.
    Zuccato, C., M. Tartari, A. Crotti, D. Goffredo, M. Valenza, L. Conti, T. Cataudella, B.R. Leavitt, M.R. Hayden, T. Timmusk, D. Rigamonti, and E. Cattaneo. 2003. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature genetics. 35:76-83.

    無法下載圖示 校內:2018-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE