| 研究生: |
傅聖文 Fu, Sheng-Wen |
|---|---|
| 論文名稱: |
矽奈米晶/二氧化矽超晶格光電元件之研究 Silicon nanocrystals/SiO2 superlattices based optoelectronic devices |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 矽奈米晶 、矽奈米晶/二氧化矽超晶格 、發光元件 、記憶體元件 、離子束輔助濺鍍 |
| 外文關鍵詞: | Si nanocrystals, Si NCs/SiO2 superlattices, LED, memory device, IBAS |
| 相關次數: | 點閱:100 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
矽是目前發展最為廣泛之半導體材料,普遍應用在現代微電子領域,尤其矽塊材積體電路產業在台灣經濟更是扮演著著舉足輕重的角色。隨著摩爾定律發展,在2016年,矽塊材積體電路已經微縮至14奈米,在未來持續發展下預計會到達7奈米甚至是以下。當矽塊材微縮至個位數奈米等級時,也就是量子侷限效應開始變得顯著,開始稱之為“矽量子點”或“矽奈米晶”。不同於矽塊材本身為間接能隙導致其發光效率不良,矽奈米晶因為其電子電洞對的波函數開始重疊(區域化),因此發光效率可以大大的提升。矽奈米晶開始應用於發光元件、太陽能電池,光偵測器等等。在本論文中我們研究矽奈米晶嵌入於富矽氧化物薄膜的光電特性,並搭配離子源輔助濺鍍。接著設計富矽氧化物/二氧化矽超晶格多層結構,研究超晶格結構的發光元件、記憶體元件的光電特性。
矽奈米晶嵌入於富矽氧化物
藉由離子束能量輔助濺鍍沉積富矽氧化物薄膜,經由退火之相分離形成矽奈米晶。藉由穿透式電子顯微鏡與X光繞射分析,觀察到調變離子束能量可以改善矽奈米晶的形成。當離子束能量增加時,矽晶的密度和尺寸會增加,同時,富矽氧化物薄膜的光致發光也有顯著的增加。此發光機制是由矽奈米晶的量子限制效應所造成。
矽奈米晶/二氧化矽超晶格發光元件:二氧化矽層的影響
這裡主要焦點在矽奈米晶/二氧化矽超晶格發光元件內的二氧化矽的影響。使用離子束輔助濺鍍每一層二氧化矽層。藉由穿透式電子顯微鏡觀察氬離子束轟擊在二氧化矽層具有改善二氧化矽層和富矽氧化物層的介面,並且沒有影響富矽氧化物內的矽奈米晶形成。二氧化矽折射係數的增加是由於密度提升所導致。製作成元件後發現發光效率提升了一倍。根據電荷儲存實驗觀察,發光效率的提升是由於二氧化矽層的注入能障增加,因而改善電荷流失率。
矽奈米晶/二氧化矽超晶格發光元件:富矽氧化物層的影響
這裡聚焦在使用氫離子源改善發光元件內的富矽氧化物的矽奈米晶形成,提高元件之發光效率。每一層富矽氧化物均受到氫離子束轟擊,矽奈米經的密度增加並且奈米尺度的介面粗糙度也有些微增加。福勒-諾德漢穿隧(Fowler-Nordheim tunneling, FN-tunneling)是載子的主要傳輸機制。藉由氫離子束,奈米粗糙化介面形成,因此降低F–N穿隧能障,同時也鈍化掉非輻射複合中心Pb。因此提高了元件的發光效率與最大輸出功率。效率提升了10倍並且啟動電壓明顯的下降。
矽奈米晶/二氧化矽超晶格記憶體元件
使用超晶格結構製作成記憶體元件,同樣地,氫離子轟擊富矽氧化物層。藉由穿透式電子顯微鏡和X光光電子能譜儀,觀察發現矽奈米晶密度和氧含量增加。記憶體視窗從16V增加到25.6V,且其漏電流顯著減少兩個級數。電荷儲存特性明顯改善增加,在外插約至11天左右,電荷量仍然維持86%。藉由光致發光分析,可推測電荷儲存時間的改善主要是受矽奈米晶、矽氧比和發光中心之間的變化所主宰控制。
This thesis focus on the progress of Si NCs embedded in Si-rich oxide (SRO) in SRO/SiO2 superlattices application for LED and memory device by employing ion-beam assisted sputtering (IBAS) system. The chapters are organized as follows:
In chapter 2, this study exploits the material and optical properties of silicon nanocrystals (Si NCs) embedded SRO films prepared by IBAS. Transmission electron microscopy and grazing-angle X-ray diffraction revealed that the IBAS improved the formation of the Si NCs in the SRO films. The size and density of Si NCs were dominated by IBAS with varying anode voltage. The photoluminescence for the SRO films was enhanced, which was associated with the quantum confinement effect of the Si NCs. The impact of Ar ion beam on the SRO films were discussed. The results exhibited the promising for development of highly efficient Si-based optoelectronic devices.
In chapter 3, this study investigated the electroluminescence (EL) properties of Si-rich oxide (SRO)/SiO2 superlattices light emitting devices (LEDs). Each SiO2 layer of the superlattices was prepared by using argon ion beam assisted sputtering (IBAS). Transmission electron microscopy revealed that the treatment of Ar ion beams on the SiO2 layers did not affect the size or distribution of the Si NCs in the SRO layers, but enhanced the thin-film quality of the SiO2 and formed a clear SiO2/SRO interface. The refractive index of SiO2 was increased by IBAS because of an increase in the density of SiO2. The EL efficiency was doubled for the IBAS device compared with that of a reference device. According to the retention property, the enhanced EL intensity of the IBAS device was ascribed to lower the charge loss rate through enhancing injection barrier of SiO2. The mechanism of the EL enhancement of the IBAS LED was discussed.
In chapter 4, this paper presents a novel method for enhancing the electroluminescence (EL) efficiency of ten-period silicon-rich oxide (SRO)/SiO2 superlattice–based light-emitting diodes (LEDs). A hydrogen ion beam (HIB) was used to irradiate on each SRO layer of the superlattices to increase the interfacial roughness in nanoscale and density of the Si nanocrystals (Si NCs). Fowler–Nordheim (F–N) tunneling was the major mechanism for injecting the carriers into the Si NCs. The barrier height of the F–N tunneling was lowered by forming the nano-roughened interface and nonradiative Pb centers were passivated through the HIB treatment. Additionally, the reflectance of the LEDs was lowered because of the nano-roughened interface. These factors considerably increased the slope efficiency of EL and maximum output power of the LEDs. The lighting efficiency increased by an order of magnitude, and the turn-on voltage decreased considerably. This study established an efficient approach for obtaining bright Si NCs/SiO2 superlattice-based LEDs.
In chapter 5, This study examined the material and optical properties of Si nanocrystals (NCs) embedded in Si-rich oxide (SRO) films prepared through ion beam-assisted sputtering (IBAS). Transmission electron microscopy and grazing-incidence X-ray diffraction revealed that IBAS improved the formation of the Si NCs in the SRO films. The size and density of Si NCs were predominantly controlled by IBAS with varying anode voltage. The photoluminescence levels of the SRO films were enhanced, which was associated with the quantum confinement effect of the Si NCs. The benefits of an Ar ion beam used on the SRO films are discussed in this paper. The results indicate that IBAS is a promising approach for the development of highly efficient Si-based optoelectronic devices.
In chapter 6, the Al-doped ZnO (AZO) films, which is an important transparent and conducting electrode in optoelectronic devices, are prepared using ion-beam assisted sputtering (IBAS) with substrate heating. Further reduction of the resistivity and an increase in the transmittance of AZO are required for optimized optoelectronic devices. A low-energy Ar ion-beam with a kinetic energy between 0-50 eV is used. The electrical and optical properties of IBAS AZO films are studied in terms of the substrate temperature (RT-300 ℃). The results show that the resistivity of AZO films decreases as the amount of chemisorbed oxygen and O-Zn bonds decrease, which increases the number of oxygen vacancies. The transmittance in the visible region is increased because of the high crystallinity of AZO films. The resistivity of IBAS AZO deposited at 300 ℃ with an anode voltage of 30 V is reduced to 5.6 × 10-3 Ω-cm because of the high carrier concentration and mobility. This shows that ion-beam treatment changes the surface/adatom reaction during the growth of AZO films, which is similar to the effect of substrate heating. The electrical and optical properties of the AZO films that depend on the ion-beam energy and substrate temperature are discussed.
List of references
[1] J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl. Phys. Lett., 73 (1998) 1991-1993.
[2] T. Nakada, M. Mizutani, 18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers, Jpn. J. Appl. Phys., 41 (2002) L165-L167.
[3] G. Gordillo, C. Calderón, CIS thin film solar cells with evaporated InSe buffer layers, Sol. Energ. Mat. Sol. Cells, 77 (2003) 163-173.
[4] H.-J. Chen, S.-W. Fu, S.-H. Wu, H.-T. Wu, C.-F. Shih, Comparative study of self-constituent buffer layers (CuS, SnS, ZnS) for synthesis Cu2ZnSnS4 thin films, Mater. Lett., 169 (2016) 126-130.
[5] S. Nakamura, T. Mukai, M. Senoh, Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes, Appl. Phys. Lett., 64 (1994) 1687-1689.
[6] S. Nakamura, The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes, Science, 281 (1998) 956-961.
[7] S.P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J.S. Speck, S. Nakamura, Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays, Acta Materialia, 61 (2013) 945-951.
[8] S.M. Sze, K.K. Ng, Physics of semiconductor devices, John Wiley & Sons, 2006.
[9] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett., 57 (1990) 1046-1048.
[10] A.G. Cullis, L.T. Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon, Nature, 353 (1991) 335-338.
[11] F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kubel, A.K. Powell, G.A. Ozin, U. Lemmer, Multicolor silicon light-emitting diodes (SiLEDs), Nano letters, 13 (2013) 475-480.
[12] C. Bonafos, Y. Spiegel, P. Normand, G. Ben-Assayag, J. Groenen, M. Carrada, P. Dimitrakis, E. Kapetanakis, B.S. Sahu, A. Slaoui, F. Torregrosa, Controlled fabrication of Si nanocrystal delta-layers in thin SiO2 layers by plasma immersion ion implantation for nonvolatile memories, Appl. Phys. Lett., 103 (2013) 253118.
[13] D. Yeol Shin, J. Hee Park, S. Kim, S.-H. Choi, K. Joong Kim, Graded-size Si-nanocrystal-multilayer solar cells, J. Appl. Phys., 112 (2012) 104304.
[14] S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge University Press, 1998.
[15] L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, The Journal of Physical Chemistry, 90 (1986) 2555-2560.
[16] J. Heitmann, F. Müller, M. Zacharias, U. Gösele, Silicon Nanocrystals: Size Matters, Adv. Mater., 17 (2005) 795-803.
[17] M.L. Mastronardi, F. Maier-Flaig, D. Faulkner, E.J. Henderson, C. Kubel, U. Lemmer, G.A. Ozin, Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals, Nano letters, 12 (2012) 337-342.
[18] K. Kůsová, L. Ondič, E. Klimešová, K. Herynková, I. Pelant, S. Daniš, J. Valenta, M. Gallart, M. Ziegler, B. Hönerlage, P. Gilliot, Luminescence of free-standing versus matrix-embedded oxide-passivated silicon nanocrystals: The role of matrix-induced strain, Appl. Phys. Lett., 101 (2012) 143101.
[19] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, Optical gain in silicon nanocrystals, Nature, 408 (2000) 440-444.
[20] L. Fan, J. Wang, L.T. Varghese, H. Shen, B. Niu, Y. Xuan, A.M. Weiner, M. Qi, An All-Silicon Passive Optical Diode, Science, 335 (2012) 447-450.
[21] F. Priolo, T. Gregorkiewicz, M. Galli, T.F. Krauss, Silicon nanostructures for photonics and photovoltaics, Nat Nano, 9 (2014) 19-32.
[22] Z.H. Lu, D.J. Lockwood, J.M. Baribeau, Quantum confinement and light emission in SiO2/Si superlattices, Nature, 378 (1995) 258-260.
[23] J. López-Vidrier, Y. Berencén, S. Hernández, B. Mundet, S. Gutsch, J. Laube, D. Hiller, P. Löper, M. Schnabel, S. Janz, M. Zacharias, B. Garrido, Structural parameters effect on the electrical and electroluminescence properties of silicon nanocrystals/SiO 2 superlattices, Nanotechnology, 26 (2015) 185704.
[24] L.X. Yi, J. Heitmann, R. Scholz, M. Zacharias, Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers, Appl. Phys. Lett., 81 (2002) 4248-4250.
[25] N.-M. Park, T.-S. Kim, S.-J. Park, Band gap engineering of amorphous silicon quantum dots for light-emitting diodes, Appl. Phys. Lett., 78 (2001) 2575.
[26] R.J. Walters, G.I. Bourianoff, H.A. Atwater, Field-effect electroluminescence in silicon nanocrystals, Nature Materials, 4 (2005) 143-146.
[27] J.-M. Shieh, Y.-F. Lai, W.-X. Ni, H.-C. Kuo, C.-Y. Fang, J.Y. Huang, C.-L. Pan, Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer, Appl. Phys. Lett., 90 (2007) 051105.
[28] J.A. Luna-López, A. Morales-Sánchez, M. Aceves-Mijares, Z. Yu, C. Domínguez, Analysis of surface roughness and its relationship with photoluminescence properties of silicon-rich oxide films, J. Vac. Sci. Technol. A, 27 (2009) 57-62.
[29] T. Hung-Yu, C. Chih-Hsien, L. Gong-Ru, Blue-Green Light Emission From Si and SiC Quantum Dots Co-Doped Si-Rich SiC p-i-n Junction Diode, Selected Topics in Quantum Electronics, IEEE Journal of, 20 (2014) 218-224.
[30] L. Palacios-Huerta, S.A. Cabanas-Tay, J.A. Luna-Lopez, M. Aceves-Mijares, A. Coyopol, A. Morales-Sanchez, Effect of the structure on luminescent characteristics of SRO-based light emitting capacitors, Nanotechnology, 26 (2015) 395202.
[31] S.A. Cabañas-Tay, L. Palacios-Huerta, J.A. Luna-López, M. Aceves-Mijares, S. Alcántara-Iniesta, S.A. Pérez-García, A. Morales-Sánchez, Analysis of the luminescent centers in silicon rich silicon nitride light-emitting capacitors, Semicond. Sci. Technol., 30 (2015) 065009.
[32] C.L. Heng, Y. Chen, Z.C. Ma, W.H. Zong, G.G. Qin, Electroluminescence from semitransparent Au film/SiO2/(amorphous-Si/SiO2) superlattice/p-Si structure, J. Appl. Phys., 89 (2001) 5682-5686.
[33] A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, L. Pavesi, Graded-size Si quantum dot ensembles for efficient light-emitting diodes, Appl. Phys. Lett., 99 (2011) 181108.
[34] C. Huh, K.H. Kim, B.K. Kim, W. Kim, H. Ko, C.J. Choi, G.Y. Sung, Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures, Adv. Mater., 22 (2010) 5058-5062.
[35] G.-R. Lin, Y.-H. Pai, C.-T. Lin, C.-C. Chen, Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes, Appl. Phys. Lett., 96 (2010) 263514.
[36] L. Ding, M.B. Yu, X. Tu, G.Q. Lo, S. Tripathy, T.P. Chen, Laterally-current-injected light-emitting diodes based on nanocrystalline-Si/SiO2 superlattice, Optics Express, 19 (2011) 2729-2738.
[37] D. Di, I. Perez-Wurfl, L. Wu, Y. Huang, A. Marconi, A. Tengattini, A. Anopchenko, L. Pavesi, G. Conibeer, Electroluminescence from Si nanocrystal/c-Si heterojunction light-emitting diodes, Appl. Phys. Lett., 99 (2011) 251113.
[38] J.-R. Chen, D.-C. Wang, H.-C. Hao, M. Lu, Achieving high brightness of silicon nanocrystal light-emitting device with a field-effect approach, Appl. Phys. Lett., 104 (2014) 061105.
[39] W. Li, S. Wang, M. Hu, S. He, P. Ge, J. Wang, Y.Y. Guo, L. Zhaowei, Enhancement of electroluminescence from embedded Si quantum dots/SiO2 multilayers film by localized-surface-plasmon and surface roughening, Sci. Rep., 5 (2015) 11881.
[40] C. Jia-Rong, Z. Zhi-Quan, H. Hong-Chen, L. Ming, Enhancing the brightness of Si nanocrystal light-emitting devices with electro-excited surface plasmons, Nanotechnology, 25 (2014) 355203.
[41] D. Li, F. Wang, D. Yang, Evolution of electroluminescence from silicon nitride light-emitting devices via nanostructural silver, Nanoscale, 5 (2013) 3435-3440.
[42] D.P. Puzzo, E.J. Henderson, M.G. Helander, Z. Wang, G.A. Ozin, Z. Lu, Visible Colloidal Nanocrystal Silicon Light-Emitting Diode, Nano letters, 11 (2011) 1585-1590.
[43] Z. Yang, M. Dasog, A.R. Dobbie, R. Lockwood, Y. Zhi, A. Meldrum, J.G.C. Veinot, Highly Luminescent Covalently Linked Silicon Nanocrystal/Polystyrene Hybrid Functional Materials: Synthesis, Properties, and Processability, Adv. Funct. Mater., 24 (2014) 1345-1353.
[44] X. Wang, R. Huang, C. Song, Y. Guo, J. Song, Effect of barrier layers on electroluminescence from Si/SiOxNy multilayer structures, Appl. Phys. Lett., 102 (2013) 081114.
[45] C. Huh, T.-Y. Kim, C.-G. Ahn, B.K. Kim, Strong visible electroluminescence from silicon nanocrystals embedded in a silicon carbide film, Appl. Phys. Lett., 106 (2015) 211103.
[46] B. Puthen Veettil, L. Wu, X. Jia, Z. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, I. Perez-Würfl, Passivation effects in B doped self-assembled Si nanocrystals, Appl. Phys. Lett., 105 (2014) 222108.
[47] C.-H. Cheng, Y.-C. Lien, C.-L. Wu, G.-R. Lin, Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency, Optics Express, 21 (2013) 391-403.
[48] C. Chen, R. Jia, M. Liu, W. Li, C. Zhu, H. Li, P. Zhang, C. Xie, Q. Wang, T. Ye, Silicon nanocrystals synthesized by electron-beam co-evaporation method and their application for nonvolatile memory, Thin Solid Films, 517 (2009) 6659-6662.
[49] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbé, K. Chan, A silicon nanocrystals based memory, Appl. Phys. Lett., 68 (1996) 1377.
[50] S. Min, K. Tsu-Jae, Impact of crystal size and tunnel dielectric on semiconductor nanocrystal memory performance, IEEE Trans. Electron Devices, 50 (2003) 1934-1940.
[51] T.Z. Lu, M. Alexe, R. Scholz, V. Talelaev, M. Zacharias, Multilevel charge storage in silicon nanocrystal multilayers, Appl. Phys. Lett., 87 (2005) 202110.
[52] S. Kim, Y.M. Park, S.-H. Choi, K.J. Kim, Origin of cathodoluminescence from Si nanocrystal/SiO2 multilayers, J. Appl. Phys., 101 (2007) 034306.
[53] X. Zeng, W. Liao, G. Wen, X. Wen, W. Zheng, Structural evolution and photoluminescence of annealed Si-rich nitride with Si quantum dots prepared by plasma enhanced chemical vapor deposition, J. Appl. Phys., 115 (2014) 154314.
[54] Y. Shi, K. Saito, H. Ishikuro, T. Hiramoto, Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals, J. Appl. Phys., 84 (1998) 2358-2360.
[55] W. Zhang, S. Zhang, Y. Liu, T. Chen, Evolution of Si suboxides into Si nanocrystals during rapid thermal annealing as revealed by XPS and Raman studies, J. Cryst. Growth, 311 (2009) 1296-1301.
[56] D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova, H. Hofmeister, Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films, J. Appl. Phys., 92 (2002) 4678-4683.
[57] I.P. Jain, G. Agarwal, Ion beam induced surface and interface engineering, Surface Science Reports, 66 (2011) 77-172.
[58] K.Y. Lim, M.C. Kim, S.H. Hong, S.-H. Choi, K.J. Kim, Nonvolatile memories by using charge traps in silicon-rich oxides, J. Appl. Phys., 108 (2010) 033708.
[59] C.-F. Shih, C.-Y. Hsiao, K.-W. Su, Enhanced white photoluminescence in silicon-rich oxide/SiO2 superlattices by low-energy ion-beam treatment, Optics Express, 21 (2013) 15888-15895.
[60] M. Warzecha, D. Köhl, M. Wuttig, J. Hüpkes, Ion beam assisted sputter deposition of ZnO for silicon thin-film solar cells, J. Phys. D: Appl. Phys., 47 (2014) 105202.
[61] S.-W. Fu, H.-J. Chen, H.-T. Wu, K.-T. Hung, C.-F. Shih, Electrical and optical properties of Al:ZnO films prepared by ion-beam assisted sputtering, Ceramics International, 42 (2016) 2626-2633.
[62] X. Jia, P. Zhang, Z. Lin, R. Anthony, U. Kortshagen, S. Huang, B. Puthen-Veettil, G. Conibeer, I. Perez-Wurfl, Accurate determination of the size distribution of Si nanocrystals from PL spectra, RSC Adv., 5 (2015) 55119-55125.
[63] A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev., 56 (1939) 978-982.
[64] H. Natter, M. Schmelzer, M.S. Löffler, C.E. Krill, A. Fitch, R. Hempelmann, Grain-Growth Kinetics of Nanocrystalline Iron Studied In Situ by Synchrotron Real-Time X-ray Diffraction, J. Phys. Chem. B, 104 (2000) 2467-2476.
[65] S. Kim, M.C. Kim, S.-H. Choi, K.J. Kim, H.N. Hwang, C.C. Hwang, Size dependence of Si 2p core-level shift at Si nanocrystal/SiO[sub 2] interfaces, Appl. Phys. Lett., 91 (2007) 103113.
[66] B.G. Lee, D. Hiller, J.-W. Luo, O.E. Semonin, M.C. Beard, M. Zacharias, P. Stradins, Strained Interface Defects in Silicon Nanocrystals, Adv. Funct. Mater., 22 (2012) 3223-3232.
[67] S. Hernández, P. Miska, M. Grün, S. Estradé, F. Peiró, B. Garrido, M. Vergnat, P. Pellegrino, Tailoring the surface density of silicon nanocrystals embedded in SiOx single layers, J. Appl. Phys., 114 (2013) 233101.
[68] C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assembles, Annu. Rev. Mater. Res., 30 (2000) 545-610.
[69] K. Dohnalová, T. Gregorkiewicz, K. Kůsová, Silicon quantum dots: surface matters, J. Phys.: Condens. Matter, 26 (2014) 173201.
[70] W.L. Zhang, S. Zhang, M. Yang, Z. Liu, Z. Cen, T. Chen, D. Liu, Electroluminescence of as-sputtered silicon-rich SiOx films, Vacuum, 84 (2010) 1043-1048.
[71] G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, Y.-L. Chueh, Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2, J. Appl. Phys., 97 (2005) 094306.
[72] S. Maj, On the relationship between refractive index and density for SiO2 polymorphs, Phys Chem Minerals, 10 (1984) 133-136.
[73] W. Rzodkiewicz, A. Panas, Application of spectroscopic ellipsometry for investigations of compaction and decompaction state in Si-SiO2 systems, Journal of Physics: Conference Series, 181 (2009) 012035.
[74] W. Rzodkiewicz, A. Panas, Determination of the Analytical Relationship between Refractive Index and Density of SiO2 Layers, Acta Physica Polonica A, 116 (2009) s92-s94.
[75] D.K. Schroder, Semiconductor material and device characterization, John Wiley & Sons, 2006.
[76] D.Y. Chen, D.Y. Wei, J. Xu, P.G. Han, X. Wang, Z.Y. Ma, K.J. Chen, W.H. Shi, Q.M. Wang, Enhancement of electroluminescence in p–i–n structures with nano-crystalline Si/SiO 2 multilayers, Semicond. Sci. Technol., 23 (2008) 015013.
[77] K.-Y. Cheng, R. Anthony, U.R. Kortshagen, R.J. Holmes, High-Efficiency Silicon Nanocrystal Light-Emitting Devices, Nano letters, 11 (2011) 1952-1956.
[78] Y. Liu, J. Xu, H. Sun, S. Sun, W. Xu, L. Xu, K. Chen, Depth-dependent anti-reflection and enhancement of luminescence from Si quantum dots-based multilayer on nano-patterned Si substrates, Optics Express, 19 (2011) 3347-3352.
[79] Y. Guo, Z. Lin, R. Huang, Z. Lin, C. Song, J. Song, X. Wang, Efficiency enhancement for SiN-based light emitting device through introduction of Si nanocones in emitting layer, Opt. Mater. Express, 5 (2015) 969-976.
[80] C. Huh, B.K. Kim, C.-G. Ahn, C.-J. Choi, S.-H. Kim, Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires, Appl. Phys. Lett., 105 (2014) 031108.
[81] M. Zacharias, P. Streitenberger, Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces, Phys. Rev. B, 62 (2000) 8391-8396.
[82] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach, Appl. Phys. Lett., 80 (2002) 661-663.
[83] T.C.-J. Yang, Y. Kauffmann, L. Wu, Z. Lin, X. Jia, B. Puthen-Veettil, T. Zhang, G. Conibeer, I. Perez-Wurfl, A. Rothschild, In-situ high resolution transmission electron microscopy observation of silicon nanocrystal nucleation in a SiO2 bilayered matrix, Appl. Phys. Lett., 105 (2014) 053116.
[84] C.R. Perrey, S. Thompson, M. Lentzen, U. Kortshagen, C.B. Carter, Observation of Si nanocrystals in a/nc-Si:H films by spherical-aberration corrected transmission electron microscopy, J. Non-Cryst. Solids, 343 (2004) 78-84.
[85] G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, K.-l. Lin, Silicon nanostructures for third generation photovoltaic solar cells, Thin Solid Films, 511–512 (2006) 654-662.
[86] A. Yurtsever, M. Weyland, D.A. Muller, Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography, Appl. Phys. Lett., 89 (2006) 151920.
[87] R.H. Fowler, L. Nordheim, Electron emission in intense electric fields, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1928, pp. 173-181.
[88] Z.A. Weinberg, On tunneling in metal‐oxide‐silicon structures, J. Appl. Phys., 53 (1982) 5052-5056.
[89] G.-R. Lin, C.-J. Lin, C.-K. Lin, Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids, Optics express, 15 (2007) 2555-2563.
[90] S.K. Ray, S. Maikap, W. Banerjee, S. Das, Nanocrystals for silicon-based light-emitting and memory devices, J. Phys. D: Appl. Phys., 46 (2013) 153001.
[91] B. Ghosh, Y. Masuda, Y. Wakayama, Y. Imanaka, J.-i. Inoue, K. Hashi, K. Deguchi, H. Yamada, Y. Sakka, S. Ohki, T. Shimizu, N. Shirahata, Hybrid White Light Emitting Diode Based on Silicon Nanocrystals, Adv. Funct. Mater., 24 (2014) 7151-7160.
[92] J.J. Wierer, A. David, M.M. Megens, III-nitride photonic-crystal light-emitting diodes with high extraction efficiency, Nat Photon, 3 (2009) 163-169.
[93] H. Hung-Wen, J.T. Chu, C.C. Kao, T.H. Hseuh, T.C. Lu, H.C. Kuo, S.C. Wang, C.C. Yu, Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface, Nanotechnology, 16 (2005) 1844.
[94] S.P. Withrow, C.W. White, A. Meldrum, J.D. Budai, D.M. Hembree, J.C. Barbour, Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2, J. Appl. Phys., 86 (1999) 396-401.
[95] B. Garrido Fernandez, M. López, C. Garcı́a, A. Pérez-Rodrı́guez, J.R. Morante, C. Bonafos, M. Carrada, A. Claverie, Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2, J. Appl. Phys., 91 (2002) 798-807.
[96] S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O.I. Lebedev, G. Van Tendeloo, V.V. Moshchalkov, Classification and control of the origin of photoluminescence from Si nanocrystals, Nature nanotechnology, 3 (2008) 174-178.
[97] F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, F. Priolo, Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films, J. Appl. Phys., 95 (2004) 3723-3732.
[98] E.H. Nicollian, J.R. Brews, E.H. Nicollian, MOS (metal oxide semiconductor) physics and technology, Wiley New York et al., 1982.
[99] C.-H. Cho, B.-H. Kim, T.-W. Kim, S.-J. Park, N.-M. Park, G.-Y. Sung, Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film, Appl. Phys. Lett., 86 (2005) -.
[100] G.-R. Lin, C.-J. Lin, Improved blue-green electroluminescence of metal-oxide-semiconductor diode fabricated on multirecipe Si-implanted and annealed SiO2/Si substrate, J. Appl. Phys., 95 (2004) 8484-8486.
[101] B. Averboukh, R. Huber, K.W. Cheah, Y.R. Shen, G.G. Qin, Z.C. Ma, W.H. Zong, Luminescence studies of a Si/SiO2 superlattice, J. Appl. Phys., 92 (2002) 3564.
[102] B.Y. Park, S. Lee, K. Park, C.H. Bae, S.M. Park, Enhancement of light emission from silicon nanocrystals by post-O2-annealing process, J. Appl. Phys., 107 (2010) 014314.
[103] Y. Dan, Optoelectronically probing the density of nanowire surface trap states to the single state limit, Appl. Phys. Lett., 106 (2015) 053117.
[104] T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes, Thin Solid Films, 516 (2008) 5822-5828.
[105] Z. Chen, G. Zhan, Y. Wu, X. He, Z. Lu, Sol–gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology, J. Alloys Comp., 587 (2014) 692-697.
[106] H.-N. Lee, C.-H. Shin, D.K. Hwang, H. Kim, K. Oh, H.-J. Kim, Pressurized polyol synthesis of Al-doped ZnO nanoclusters with high electrical conductivity and low near-infrared transmittance, J. Alloys Comp., 644 (2015) 193-198.
[107] S. Thanka Rajan, B. Subramanian, A.K. Nanda Kumar, M. Jayachandran, M.S. Ramachandra Rao, Fabrication of nanowires of Al-doped ZnO using nanoparticle assisted pulsed laser deposition (NAPLD) for device applications, J. Alloys Comp., 584 (2014) 611-616.
[108] X. Chen, W. Guan, G. Fang, X.Z. Zhao, Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by pulsed laser deposition, Appl. Surf. Sci., 252 (2005) 1561-1567.
[109] R. Wen, L. Wang, X. Wang, G.-H. Yue, Y. Chen, D.-L. Peng, Influence of substrate temperature on mechanical, optical and electrical properties of ZnO:Al films, J. Alloys Comp., 508 (2010) 370-374.
[110] Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, S. Hou, Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method, Superlattices Microstruct., 49 (2011) 644-653.
[111] H.B. Zhou, H.Y. Zhang, M.L. Tan, Z.G. Wang, Effects of substrate temperature on the efficiency of hydrogen incorporation on the properties of Al-doped ZnO films, Superlattices Microstruct., 51 (2012) 644-650.
[112] B. He, J. Xu, H. Xing, C. Wang, X. Zhang, The effect of substrate temperature on high quality c-axis oriented AZO thin films prepared by DC reactive magnetron sputtering for photoelectric device applications, Superlattices Microstruct., 64 (2013) 319-330.
[113] T. Minami, H. Nanto, S. Takata, Highly conductive and transparent ZnO thin films prepared by r.f. magnetron sputtering in an applied external d.c. magnetic field, Thin Solid Films, 124 (1985) 43-47.
[114] Z.C. Jin, I. Hamberg, C.G. Granqvist, Optical properties of sputter‐deposited ZnO:Al thin films, J. Appl. Phys., 64 (1988) 5117-5131.
[115] K.H. Kim, K.C. Park, D.Y. Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, J. Appl. Phys., 81 (1997) 7764-7772.
[116] C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, M. Wuttig, Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films, J. Appl. Phys., 95 (2004) 1911-1917.
[117] W.J. Jeong, S.K. Kim, G.C. Park, Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell, Thin Solid Films, 506–507 (2006) 180-183.
[118] G.-X. Liang, P. Fan, X.-M. Cai, D.-P. Zhang, Z.-H. Zheng, The Influence of Film Thickness on the Transparency and Conductivity of Al-Doped ZnO Thin Films Fabricated by Ion-Beam Sputtering, J. Electron. Mater., 40 (2011) 267-273.
[119] S.J. Tark, Y.W. Ok, M.G. Kang, H.J. Lim, W.M. Kim, D. Kim, Effect of a hydrogen ratio in electrical and optical properties of hydrogenated Al-doped ZnO films, J. Electroceram., 23 (2009) 548-553.
[120] R. Cebulla, R. Wendt, K. Ellmer, Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties, J. Appl. Phys., 83 (1998) 1087-1095.
[121] M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films, Appl. Surf. Sci., 158 (2000) 134-140.
[122] S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, Sol–gel derived Li–Mg co-doped ZnO films: Preparation and characterization via XRD, XPS, FESEM, J. Alloys Comp., 512 (2012) 171-178.
[123] J.C.C. Fan, J.B. Goodenough, X‐ray photoemission spectroscopy studies of Sn‐doped indium‐oxide films, J. Appl. Phys., 48 (1977) 3524-3531.
[124] C. Lennon, R.B. Tapia, R. Kodama, Y. Chang, S. Sivananthan, M. Deshpande, Effects of Annealing in a Partially Reducing Atmosphere on Sputtered Al-Doped ZnO Thin Films, J. Electron. Mater., 38 (2009) 1568-1573.
[125] H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, Y. Cao, Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films, Appl. Surf. Sci., 257 (2011) 4906-4911.
[126] D.-K. Kim, H.-B. Kim, Dependence of the properties of sputter deposited Al-doped ZnO thin films on base pressure, J. Alloys Comp., 522 (2012) 69-73.
[127] S. Major, S. Kumar, M. Bhatnagar, K.L. Chopra, Effect of hydrogen plasma treatment on transparent conducting oxides, Appl. Phys. Lett., 49 (1986) 394-396.
[128] D.K. Kim, H.B. Kim, Room temperature deposition of Al-doped ZnO thin films on glass by RF magnetron sputtering under different Ar gas pressure, J. Alloys Comp., 509 (2011) 421-425.
[129] P.W. Wang, Y.-Y. Chen, J.-C. Hsu, C.-y. Wang, Structural, optical and electrical properties of aluminum doped ZnO films annealed in air and hydrogen atmosphere, J. Non-Cryst. Solids, 383 (2014) 131-136.
[130] Y.-S. Kim, W.-P. Tai, Electrical and optical properties of Al-doped ZnO thin films by sol–gel process, Appl. Surf. Sci., 253 (2007) 4911-4916.
[131] J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, Phys. Status Solidi B, 15 (1966) 627-637.
[132] T.S. Moss, The Interpretation of the Properties of Indium Antimonide, Proc. Phys. Soc. B, 67 (1954) 775.
[133] E. Burstein, Anomalous Optical Absorption Limit in InSb, Phys. Rev., 93 (1954) 632-633.
[134] W. Yang, Z. Liu, D.-L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method, Appl. Surf. Sci., 255 (2009) 5669-5673.