| 研究生: |
黃俊豪 Huang, Chun-Hao |
|---|---|
| 論文名稱: |
應用表面波譜法調查土層剪力波速之研究 |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 頻散曲線 、剪力波速 、非破壞檢測 、表面波譜法 |
| 外文關鍵詞: | sasw, NDT, shear-wave velocity, dispersion curve |
| 相關次數: | 點閱:135 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面波譜法(spectral analysis of surface wave method,簡稱SASW)為近年來新興發展之震測試驗方法,藉由頻譜分析雷利波求取土層剖面剪力波速與剪力模數資料。由於此法進行試驗時僅需將受波器置於測體表面,且對測體之影響屬微小應變(<0.001%),故此試驗屬非破壞檢測範疇,可簡便、快速求取測體動態參數。
本研究主要包括表面波譜法之現地試驗方式與根據頻散曲線計算土層剪力波速兩部分。根據現地試驗分析,比較各量測參數之影響,以求得較完整之頻散資料提供反算依據;建立波傳矩陣之正算方式,以求取理論頻散曲線,並指出反算時所遭遇之問題;最後依試驗結果比對現有P-S logging鑽探資料,提出研究結果與建議。
根據試驗結果顯示,表面波譜法的確能夠正確且快速的求得層狀土層剪力波速分佈。在土層剪力波速隨深度呈現漸變之情況下,使用簡易法推估之土層剪力波速與理論值間之差距小於10%;與現地懸垂式P-S波探測之結果差距小於20%;若適度的配合使用最佳化反算將增加計算結果之精度。惟波傳矩陣法之理論正算有其盲點(反向模式);且所能測得之土層深度受限於使用之震源型式,一般來說鮮少超過50公尺。
關鍵字:表面波譜法,非破壞檢測,剪力波速,頻散曲線
none
1. 倪勝火,常正之,「土層中雷利波散射曲線之數值計算模式分析」,中國土木水利工程學刊,第四卷,第一期,第49-57頁 (1992)。
2. 張德文,「表面波譜法檢測層狀地工系統之理論研究」,第六屆路面工程學術研討會,第381-402頁 (1992)。
3. 常正之,「應用雷利波散射曲線反算土層動態參數之研究」,博士論文,國立成功大學土木工程研究所 (1993)。
4. 古旭程,「表面波譜法應用於土層動態特性評估之研究」,碩士論文,國立成功大學土木工程研究所 (1993)。
5. 左天雄,「連續表面波試驗(CSWT)及反算分析地層剪力波速」,土木技術,第18期,第48-63頁(1999)。
6. 鄭福和,「波傳矩陣之最佳化基因演算法於頻散曲線反算土層剪力波速之研究」,碩士論文,國立台灣大學土木工程研究所(2000)。
7. 林潔興,「表面波頻散曲線之基因演算法反算土層剪力波速」,碩士論文,國立台灣大學土木工程研究所(2001)。
8. 倪勝火,「表面波譜法之分析原理與應用」,地工技術,第86期,第5-18頁(2001)。
9. 林進興、蘇百加,「表面波譜法之實務與應用」,地工技術,第86期,第19-28頁(2001)。
10. 張正宙,「多頻道表面波震測之研究」,碩士論文,國立交通大學土木工程研究所(2002)。
11. 潘建志,「表面波譜法反算土層剪力波速之探討」,碩士論文,國立成功大學土木工程研究所 (2002)。
12. Addo, K.O., and Robertson, P.K., “Shear Wave Velocity Measurements Using Rayleigh Surface Waves,” Canadian Geotechnical Conference, pt. 1, pp. 11/1-11/10 (1991).
13. Bolt, B.A., Earthquakes: A Primer. Freeman, W.H., and Company, San Francisco (1978).
14. Das, B.M., Principles of Soil Dynamics. PWS-KENT Publishing Company, Boston (1993).
15. Dorman, J., and Ewing, M., “Numerical Inversion of Seismic Surface Wave Dispersion Data and Crust-Mantle Structure in the New York-Pennsylvania Area,” Journal of Geophysical Research, Vol. 67, No. 13, pp. 5227-5241 (1962).
16. Dunkin, J.W., “Computation of Modal Solutions in Layered Elastic Media at High Frequencies,” B.S.S.A., Vol. 55, No. 2, pp. 335-358 (1965).
17. Gazetas, G., “Vibrational Characteristics of Soil Deposits with Variable Velocity,” J. Num. Anal. Meth. Geomech., 6, pp. 1-20 (1982).
18. Gucunski, N. and Woods, R.D., “Inversion of Rayleigh Wave Dispersion Curve for SASW Test,” Soil Dynamics and Earthquake Engineering, Vol. 1, pp. 127-138 (1991).
19. Gucunski, N., Ganji V., and Maher, M.H., “Effects of Obstacles on Rayleigh Wave Dispersion Obtained from the SASW Test,” Soil Dynamic and Earthquake Engineering, Vol. 15, No. 4, pp. 223-231 (1996).
20. Haskell, N.A., “The Distribution of Surface Waves on Multilayered Media,” B.S.S.A., Vol. 43, No. 1, pp. 17-34 (1953).
21. Heukelom, W., and Foster, C.R., “Dynamic Testing of Pavements,” J. of the Soil Mech. and Found. Div., ASCE, Vol. 86, SM1, Part1, pp. 1-28 (1960).
22. Hiltune, D.R., and Woods, R.D., “SASW and Crosshole Test Result Compared,” Geotechnical Special Publication, Publ. by ASCE, NY USA., pp. 279-289 (1988).
23. Ignacio, S.S., Roesset, J.M., Shao, K.Y., Stokoe, II, K.H., and Rix, G.J., “Analytical Evaluation of Variables Affecting Surface Wave Testing of Pavements,” Transportation Research Record, Vol. 1136, pp. 86-95 (1987).
24. Jianghai X., Richard D.M., and Choon B.P., “Estimation of Near Surface Shear-Wave Velocity by Inversion of Rayleigh Waves,” Geophysics, Vol. 64, No. 3, pp. 691-700 (1999).
25. Joh, S.H., “Advances in Interpretation and Analysis Techniques for Spectral-Analysis-of-Surface Waves (SASW) Measurements,” Ph. D. Dissertation, The Univ. of Texas at Austin (1996).
26. Menzies, B.K., and Matthews, M.C., “The Continuous Surface-Wave System: A Modern Technique for Site Investigation,” Special lecture: Indian Geotechnical Conference Madras, Dec 11-14, 1996.(1996)
27. Nazarian, S., and Stokoe, II, K.H., “In Situ Determination of Elastic Moduli of Pavement Systems by Spectral-Analysis-of-Surface-Waves Method (Theoretical Aspects),” Research report 368-1F, Center for Transportation Research, The Univ. of Texas at Austin (1985).
28. Nazarian, S., and Stokoe, II, K.H., “In Situ Determination of Elastic Moduli of Pavement Systems by Spectral-Analysis-of-Surface-Waves Method (Theoretical Aspects),” Research report 437-2, Center for Transportation Research, The Univ. of Texas at Austin (1986).
29. Nelder, J.A., and Mead, R., “A Simplex Method for Function Minimization,” The Computer Journal, Vol. 7, pp. 308-313 (1964).
30. Osama, H., “Evolution-Based Genetic Algorithms for Analysis of Non-destructive Surface Wave Tests of Pavements,” NDT& E International, Vol. 31, No. 4, pp. 273-280 (1998).
31. Rix, G.J., “Experimental Study of Factors Affecting the Spectral-Analysis of Surface Waves Method,” Ph. D. Dissertation, The University of Texas at Austin, December (1988).
32. Rix, G.J., Stokoe, II, K.H., and Roesset, J.M., “Experimental Study of Factors Affecting the Spectral-Analysis of Surface Waves Method,” Research report 1123-5, Center for Transportation Research, The Univ. of Texas at Austin (1991).
33. Rix, G.J., and Leipski, E.A., “Accuracy and Resolution of Surface Wave Inversion,” Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics, Edited by Bhatia, S.K., and Blaney, G.W., pp. 17-32. New York, American Society of Civil Engineers (1991).
34. Satoh, T., Yamagata, K., Poran C.J., and Rodrlguez, J.A., “Soil Profiling by Spectral Analysis of Surface Waves,” Proc. of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, pp. 1429-1434 (1991).
35. Thomson, W.T., “Transmission of Elastic Waves through a Stratified Solid Medium,” Journal of Applied Physics, Vol. 21, pp. 89-93 (1950).
36. Tokimatsu K., “Effect of Multiple Modes on Rayleigh Wave Dispersion Characteristics,” Journal of Geotechnical Engineering, Vol. 118, No. 10, pp. 1529-1543 (1992).
37. Virieux, J., “SH Wave Propagation in Hetergeneous Media: Velocity-Stress Finite-Difference Method,” Geophysics, Vol. 49, pp. 1933-1957 (1984).
38. Virieux, J., “P-SV Wave Propagation in Hetergeneous Media: Velocity- Stress Finite-Difference Method,” Geophysics, Vol. 51, pp. 889-901 (1986).