簡易檢索 / 詳目顯示

研究生: 王冠文
Wang, Guan-Wen
論文名稱: 改良式史托克參數法之扭轉向列型液晶盒多參數量測
An Improved Stokes Parameters Method for Measurements of the Cell hickness, Twist Angle, and Azimuth Angle of twisted-Nematic Liqud Crystal Cells
指導教授: 呂宗行
Leu, Tzong-Shyng
羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 78
中文關鍵詞: 史托克參數扭轉向列型液晶方位角扭轉繳厚度
外文關鍵詞: Stokes parameters, azimuthal angle, twisted-nematic liquid crystals, cell thickness, twist angle
相關次數: 點閱:121下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 改良式史托克參數法的研究重點是計算液晶分子在扭轉向列型液晶盒內的方位角、厚度和扭轉角。以往有關利用史托克參數計算液晶盒厚度和扭轉角的文獻,皆受限於精確的初始已知條件─方位角。當一道線性偏振光穿透液晶盒之後,由於扭轉向列型液晶具有光學異向性和旋光性,將造成原本的線性偏振態發生改變。透過簡單的光學實驗架構測量線性偏振光經過液晶盒之後的四組穿透光強度(Ix, Iy, I45o, Iq,45o),將所測量到的光強度配合史托克參數法計算穿透光束的偏振態。最後,利用曲線擬合法計算方位角並調整至最佳化,進而提高計算液晶盒厚度、扭轉角的精確性。
    對扭轉向列型液晶而言,其入射面液晶分子長軸方向與實驗座標軸x所夾的角度,可稱之為方位角。此外,史托克參數(S0, S1, S2, S3)可在邦加球(poincaré sphere)座標系統上描繪出任意偏振光的偏振現象。當線性偏振光偏振方向與液晶分子的夾角改變時,將會影響史托克參數在邦加球上曲線的分布。基於此種因素,我們分析方位角與偏振方向的關係並找出最佳化角度進而降低其他參數的計算誤差。經過多次實驗証實,調整後的方位角的確提高計算厚度與扭轉角的精確度。

    An improved Stokes parameter method for measuring the azimuthal angle, cell thickness, and twist angle of twisted-nematic liquid crystal (TNLC) cells is proposed. After adjusting the azimuthal angle to be around 0° by a cross-polarizer setup and curve fitting method, the optimum cell thickness and twist angle extractions based on an improved Stokes parameters method could be achieved and the azimuth angle could be further modified.
    The preliminary experimental results verify the measurement value is more accurate than that without roughly adjusting the azimuth angle of a TNLC cell to be 0°. The accuracy of the azimuthal angle, cell thickness, and twist angle depends on the measurement error in Stokes parameters. Even if the maximum errors of Stokes parameters by light intensities have △S1=6.220% , △S2=6.677% , △S3=10.966% respectively, the maximum errors of the cell thickness and twist angle approximately have △d=0.082㎛ and △φ=1.909°, respectively.

    中文摘要.................... I Abstract.................... II 誌謝.................... III Table of Contents.................... IV List of Tables.................... VII List of Figures.................... VIII Chapter 1 Introduction.................... 1 1.1 Preface.................... 1 1.2 Review of measurements for Twisted-Nematic Liquid Crystal Cells.................... 1 1.2.1 An extinction measurement method.................... 2 1.2.2 Opto-electrical measurement method.................... 3 1.2.3 Stokes parameters method.................... 4 1.3 Destinations and motivations of the research.................... 5 1.4 Overview of chapters.................... 6 Chapter 2 Introduction of Liquid Crystals.................... 11 2.1 Structure of liquid crystal phases.................... 11 2.2 Alignment techniques of liquid crystal molecules.................... 12 2.3 Light propagation in homogeneous uniaxial LC materials.................... 13 2.4 Visible and infrared absorption.................... 16 2.5 Adiabatic following.................... 16 Chapter 3 Optical Properties of a Twisted-Nematic Liquid Crystal.................... 24 3.1 Operation principle.................... 24 3.2 Twist effect.................... 25 3.3 Jones matrix method.................... 26 3.4 Analyzed the simplified Jones matrix representation for TN cells with an arbitrary twist angle and Pretilt Angle.................... 30 3.5 Surface anchoring energy.................... 33 3.6 Partially polarized and unpolarized light.................... 35 3.7 Poincaré sphere.................... 38 Chapter 4 Measuring System and Methods.................... 46 4.1 Basic Stokes parameters method.................... 46 4.2 Determination of twist angle.................... 49 4.3 Determination of cell thickness.................... 51 4.4 Determination of azimuthal angle.................... 51 4.5 Flow chart in procedure of an improved Stokes parameters method.................... 52 Chapter 5 Experimental Results and Error Analysis.................... 61 5.1 Error analysis.................... 61 5.1.1 Error by azimuthal angle.................... 62 5.1.2 Percentage of error.................... 63 5.2 Saddle point and experimental result.................... 64 Chapter 6 Conclusions and future works.................... 71 6.1 Conclusions.................... 71 6.2 Future works.................... 72 Reference ....................74 Autobiography.................... 78

    Akahane, T., Kaneko, H. and Kimura, M., “Novel Method of Measuring Surface Torsional Anchoring Strength of Nematic Liquid Crystals,” Jpn. J. Appl. Phys., vol. 35, p. 4434-4437, 1996.

    Bahadur, B., Liquid crystals: applications and uses, World Scientific Publishing, vol.1, 1992.

    Bahadur, B., Liquid crystals: applications and uses, World Scientific Publishing, vol.3, 1992.

    Blinov, L. M., Chigrinov, V. G., Blinov, L. M., Electrooptic effects in liquid crystal materials, New York: Springer-Verlag, 1994.

    Chae, J. S. and Moon, S. G., “Cell parameter measurement of a twisted-nematic liquid crystal by the spectroscopic method,” J. Appl. Phys., vol. 95, pp. 3250-3254, 2004.

    Chandrasekhar, S., Liquid Crystals, Cambridge University Press, 1992.

    Gu, M., Smalyukh, I. I., Lavrentovich, O.D., “Directed vertical alignment liquid crystal display with fast switching,” Appl. Phys. Lett., vol. 88, pp. 061110, 2006.

    Iimura, Y., Kobayashi, N. and Kobayashi, S., “A New Method for Measuring the Azimuthal Anchoring Energy of a Nematic Liquid Crystal,” Jpn. J. Appl. Phys., vol. 33, pp. L434-L436, 1994.

    Jiang, M., Wang, Z., Sun, R., Ma, K., Ma, R. and Huang, X., “Method of Studying Surface Torsional Anchoring of Nematic Liquid Crystal,” Jpn. J. Appl. Phys., vol. 33, pp. L1242-L1244, 1994.

    Kawamura, M. and Sato, S., “A near-infrared Stokes parameter method for determining two-dimensional cell thickness and twist angle distributions of liquid crystal color displays,” Proceedings of SPIE, vol. 4799, pp. 170-177, 2002.

    Kawamura, M., Goto, Y. and Sato, S., “A Two-Dimensional Pretilt Angle Distribution Measurement of Twisted Nematic Liquid Crystal Cells Using Stokes Parameters at Plural Wavelengths,” Jpn. J. Appl. Phys. vol. 43 pp. 709-714, 2004.

    Kawamura, M., Goto, Y. and Sato, S., “Determination of anchoring energy in nematic liquid crystal cells with controllable twist anlges using a stokes parameter method”, Jpn. J. Appl. Phys., vol. 43, p. 6239-6242, 2004.

    Kawamura, M., Goto, Y., and Sato, S., “Two-dimensional measurements of cell parameter distributions in reflective liquid crystal displays by using multiple wavelengths Stokes parameters,” J. Appl. Phys., vol. 95, pp. 4371-4375, 2004.

    Khoo, I. C., Liquid Crystals: physical properties and nonlinear optical phenomena, New York: Wiley & Sons, 1995.

    Lien, A., “Optimization of the Off-States for Single-Layer and Double-Layer General Twisted Nematic Liquid Crystal Displays,” IEEE Transactions on Electron Devices, vol. 36, pp.1910-1914, 1989.

    Lien, A., “The general and simplified Jones matrix representations for the high pretilt twisted nematic cell,” J. Appl. Phys., vol. 67, pp.2853, 1990.

    Lien, A. and Takano, H., “Cell gap measurement of filled twisted nematic liquid crystal displays by a phase compensation method,” J. Appl. Phys., vol. 69, pp. 1304-1309, 1991.

    Limura, Y., Kobayashi, N. and Kobayashi, S., “A New Method for Measuring the Azimuthal Anchoring Energy of a Nematic Liquid Crystal,” Jpn. J. Appl. Phys., vol. 33, pp. L434-L436, 1996.

    Mauguin, C., Bull. Soc. Franc. Mineral., vol. 34, pp.71-117., 1911.

    Moreno, I., Bennis, N., Davis, J. A., Ferreira, C., “Twist angle determination in liquid crystal displays by location of local adiabatic points,” Optics Communications, vol. 158, pp. 231-238, 1998.

    Pohl, L., Weber, G., Eidenschink, R., Baur , G. and Fehrenbach, W., “ Low-Δn-Twisted Nematic Cell with Improved Optical Properties,” Appl. Phys. Lett., vol. 38, pp. 497-499, 1981.

    Raynes, E. P., Mol. Cryst. Liq. Cryst. Liq. Cryst. Lett., vol. 4, pp.69, 1987.

    Schadt, M. and Helfrich, W., “Voltage-Dependent Optical Activity of A Twisted Nematic Liquid Crystal,” Appl. Phys. Lett., vol.18, pp.127, 1971.

    Uchida, T., Hirano, M. and Sasaki, H., Liquid Crystals, vol. 5, p.1127, 1989.

    Woon, K. L. and O’Neill, M., “Stokes-parameter analysis of the polarization of light transmitted through a chiral nematic liquid-crystal cell,” J. Opt. Soc. Am. A, vol. 22, pp. 760-766, 2005.

    Yariv, A. and Yeh., P., Optical Waves in Crystals, Wiley, 1984.

    Yeh, P. and Gu, C., Optics of Liquid Crystal Displays, Wiley Interscience Publication, New York, 1999.

    Yokoyama, H. and van Sprang, H. A., “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distortions at high fields,” J. Appl. Phys., vol.57, pp.4520-4526, 1985.

    Zhou, Y., He, Z. and Sato, S., “A Novel Method for Determining the Cell Thickness and Twist Angle of a Twisted Nematic Cell by Stokes Parameter Measurement,” Jpn. J. Appl. Phys., vol. 36, pp.2760-2764, 1997.

    Zhou, Y., He, Z. and Sato, S., “A Improved Stokes Parameter Method for Determination of Cell Thickness and Twist Angle Distributions in Twisted Nematic Liquid Crystal Devices,” Jpn. J. Appl. Phys., vol, 37, pp. 2567-2571, 1998.

    下載圖示 校內:2011-07-28公開
    校外:2011-07-28公開
    QR CODE