| 研究生: |
李翊丞 Lee, Yi-Chen |
|---|---|
| 論文名稱: |
應用於雙向V2G之無線電能傳輸研究 Study on Wireless Power Transfer for Bidirectional V2G Applications |
| 指導教授: |
李嘉猷
Lee, Jia-You 李祖聖 Li, Tzuu-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 電動車 、感應充電墊 、雙向電能傳輸 、非接觸式電能傳輸 |
| 外文關鍵詞: | Electric vehicles, inductive charging pad, bidirectional power transmission, contactless power transfer |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製一種專為電動車設計的雙向非接觸式感應充電墊,特別針對電動車長時間停放於公司的情況進行優化,不僅能夠確保在電動車離開前將電池充滿,還能夠在充電過程中提供電能進行調度,實現電能的高效管理和靈活應用。本文首先探討常見激勵電源架構,以雙向全橋電路作為激勵電源,接著以雙埠式網絡分析諧振網絡,針對不同架構之特性進行相互比較,再推導出諧振網絡輸入阻抗與輸出功率公式,最後選擇LCL諧振網絡作為此系統諧振架構,以提升感應電能傳輸能力以及效率。接續設計電壓與電流感測電路,並使用數位訊號處理器撰寫程式實現雙向控制以及定電流充電。感應充電墊系統為對稱結構,因此可直接由電池模組放電,實現反向電能傳輸。最後,實驗測得在輸入100 V電壓、開關頻率85 kHz和間距100 mm的條件下,系統最高能達到33 W的傳輸功率和77%的效率。
This thesis presents a bidirectional contactless inductive charging pad for electric vehicles, optimized for cases where vehicles are parked at a company for extended periods. It ensures that the battery is fully charged before departure and provides energy during the charging process for efficient energy management and flexible application. The study first examines excitation power supply architectures, using a bidirectional full-bridge circuit. It then analyzes resonant networks with a two-port network approach, compares different architectures, and derives formulas for input impedance and output power. The LCL resonant network is chosen for its ability to enhance inductive power transfer and efficiency. Voltage and current sensing circuits are designed, and a digital signal processor is programmed for bidirectional control and constant current charging. The system, featuring a symmetrical structure, allows direct discharge from the battery module for reverse energy transfer. Experimental results show a maximum power transfer of 33 W and an efficiency of 77% with an input voltage of 100 V, switching frequency of 85 kHz, and a gap of 100 mm.
[1] “全球電動車產值爆發成長 2025 年銷量將突破 1600 萬台” 自由時報,2021。檢自: https://ec.ltn.com.tw/article/paper/1480660。
[2] “Tesla 充電樁” Tesla,2022。檢自: https://www.tesla.com/zh_tw
[3] A. Zaheer, D. Kacprzak, and G. A. Covic, "A bipolar receiver pad in a lumped IPT system for electric vehicle charging applications,” in Proc. IEEE ECCE’12, 2012, pp. 283-290.
[4] Y. Nagatsuka, N. Ehara, Y. Kaneko, and T. Yasuda, “Compact contactless power transfer system for electric vehicles,” in Proc. IPEC, 2010, pp. 807-813.
[5] M. Chigira, Y. Nagatsuka, Y. Kaneko, S. Abe, T. Yasuda, and A. Suzuki, "Small-size light-weight transformer with new core structure for contactless electric vehicle power transfer system," in Proc. IEEE ECCE, Phoenix, AZ, USA, 2011, pp. 260-266.
[6] Yasuda, I. Norigoe, S. Abe, and Y. Kaneko, "Contactless charging systems," in Proc. 2011 IEEE INTELEC, Amsterdam, Netherlands, 2011, pp. 1-7.
[7] G. A. Covic and J. T. Boys, "Modern trends in inductive power transfer for transportation applications," IEEE J. Emerging Sel. Top. Power Electron., vol. 1, no. 1, pp. 28-41, March 2013.
[8] A. Zaheer, H. Hao, G. A. Covic, and D. Kacprzak, "Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable Electric Vehicle Charging," IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1937-1955, April 2015.
[9] G. A. Covic, J. T. Boys, M. L. G. Kissin, and H. G. Lu, "A three-phase inductive power transfer system for roadway-powered vehicles," IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3370-3378, Dec. 2007.
[10] G. A. J. Elliott, S. Raabe, G. A. Covic, and J. T. Boys, "Multiphase pickups for large lateral tolerance contactless power-transfer systems," IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1590-1598, May 2010.
[11] M. L. G. Kissin, J. T. Boys, and G. A. Covic, "Interphase mutual inductance in polyphase inductive power transfer systems," IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2393-2400, July 2009.
[12] S. Raabe and G. A. Covic, "Practical design considerations for contactless power transfer quadrature pick-ups," IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 400-409, Jan. 2013.
[13] K. Sarabandi and Y. J. Song, "Subwavelength radio repeater system utilizing miniaturized antennas and metamaterial channel isolator," IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2683-2690, July 2011.
[14] Y. J. Song and K. Sarabandi, "Miniaturized radio repeater for enhanced wireless connectivity of Ad-Hoc Networks," IEEE Trans. Antennas Propag., vol. 60, no. 8, pp. 3913-3920, Aug. 2012.
[15] Y. J. Song and K. Sarabandi, "A simultaneous dual-channel micro-radio repeater for Ad-Hoc wireless communication," IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3378-3383, June 2014.
[16] M. Kashanianfard and K. Sarabandi, "Directional Full-Duplex RF Booster for 2450 MHz ISM Band," IEEE Trans. Antennas Propag., vol. 65, no. 1, pp. 134-141, Jan. 2017.
[17] M. Budhia, J. T. Boys, G. A. Covic, and C. Y. Huang, "Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems," IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, Jan. 2013.
[18] J. Sallan, J. L. Villa, A. Llombart, and J. F. Sanz, "Optimal design of ICPT systems applied to electric vehicle battery charge," IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2140-2149, June 2009.
[19] H. Matsumoto, Y. Neba, K. Ishizaka and R. Itoh, "Comparison of characteristics on planar contactless power transfer systems," IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[20] J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho and C. T. Rim, "Narrow-width inductive power transfer system for online electrical vehicles," IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666-3679, Dec. 2011.
[21] Chwei-Sen Wang, O. H. Stielau and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[22] Chwei-Sen Wang, G. A. Covic and O. H. Stielau, "Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems," IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004.
[23] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995-1002, July 2004.
[24] M. Budhia, G. A. Covic and J. T. Boys, "Design and optimization of circular magnetic structures for lumped inductive power transfer systems," IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
[25] H. Ayano, K. Yamamoto, N. Hino and I. Yamato, "Highly efficient contactless electrical energy transmission system," in Proc. ACIES., IECON., Sevilla, 2002, pp. 1364-1369.
[26] R. Bukya, B. Mangu, B. Bhaskar and J. Ramesh, "Design and analysis of compensation capacitors in P-S topology for wireless system with buck/boost converter on receiver side," in Proc. ITEC-India., New Delhi, India, 2021.
[27] D. A. G. Pedder, A. D. Brown and J. A. Skinner, "A contactless electrical energy transmission system," IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 23-30, Feb. 1999.
[28] 胡至欣,“電動車變行動電源!台電V2G雙向充電站開放免費使用” 東森新聞雲,2021年。[Online]. Available at: https://finance.ettoday.net/news/2051735。
[29] A. A. S. Mohamed, A. Berzoy and O. A. Mohammed, "Experimental validation of comprehensive steady-state analytical model of bidirectional WPT system in EVs applications," IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5584-5594, July 2017.
[30] F. Liu, K. Li, K. Chen and Z. Zhao, "A phase synchronization technique based on perturbation and observation for bidirectional wireless power transfer system," IEEE J. Emerging Sel. Top. Power Electron., vol. 8, no. 2, pp. 1287-1297, June 2020.
[31] L. Zhao, D.J. Thrimawithana and U. K. Madawala, "Hybrid bidirectional wireless EV charging system tolerant to pad misalignment," IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7079-7086, Sept. 2017.
[32] B. X. Nguyen et al., "An efficiency optimization scheme for bidirectional inductive power transfer systems," IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6310-6319, Nov. 2015.
[33] X. Zhang et al., "A control strategy for efficiency optimization and wide ZVS operation range in bidirectional inductive power transfer system," IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 5958-5969, Aug. 2019.
[34] S. Jia, C. Chen, P. Liu and S. Duan, "A digital phase synchronization method for bidirectional inductive power transfer," IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6450-6460, Aug. 2020.
[35] D. J. Thrimawithana, U. K. Madawala and M. Neath, "A synchronization technique for bidirectional IPT systems," IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 301-309, Jan. 2013.
[36] Y. Liu, U. K. Madawala, R. Mai and Z. He, "Zero-phase-angle controlled bidirectional wireless EV charging systems for large coil misalignments," IEEE Trans. Power Electron., vol. 35, no. 5, pp. 5343-5353, May 2020.
[37] Y. Tang, Y. Chen, U. K. Madawala, D. J. Thrimawithana and H. Ma, "A new controller for bidirectional wireless power transfer Systems," IEEE Trans. Power Electron., vol. 33, no. 10, pp. 9076-9087, Oct. 2018.
[38] D. J. Thrimawithana, U. K. Madawala and M. Neath, "A P&Q based synchronization technique for Bi-directional IPT pick-ups," in Proc. NICPEDS., Singapore, 2011.
[39] A. A. S. Mohamed and O. Mohammed, "Physics-based Co-simulation platform with analytical and experimental verification for bidirectional IPT system in EV applications," IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 275-284, Jan. 2018.
[40] L. Zhao, D. J. Thrimawithana, U. K. Madawala, A. P. Hu and C. C. Mi, "A misalignment-tolerant series-hybrid wireless EV charging system with integrated magnetics," IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1276-1285, Feb. 2019.
[41] A. A. S. Mohamed, A. Berzoy, F. G. N. de Almeida and O. Mohammed, "Modeling and assessment analysis of various compensation topologies in bidirectional IWPT System for EV Applications," IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4973-4984, Sept.-Oct. 2017.
[42] A. A. S. Mohamed, T. Youssef and O. Mohammed, "Vehicle side predictive power-flow control of bidirectional WPT system for EV ancillary services," in Proc. APEC., Tampa, FL, USA, 2017, pp. 3211-3217.
[43] J. -Y. Lee and B. -M. Han, "A bidirectional wireless power transfer EV charger using self-resonant PWM," IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1784-1787, April 2015.
[44] 王志方,磷酸鋰鐵電池之產業狀況,IBT,2008年11月。
[45] 許家興,電動車電池類型與電池基礎介紹,車輛研測資訊,2009年10月。
[46] A. Al-Haj Hussein and I. Batarseh, "A review of charging algorithms for nickel and lithium battery chargers," IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 830-838, Mar 2011.
[47] 陳建任,具多鐵芯感應結構非接觸式油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
[48] Y. Yao, Y. Wang, X. Liu, F. Lin, and D. Xu, “A novel parameter tuning method for a double-sided LCL compensated WPT system with better comprehensive performance,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8525-8536, Oct. 2018.
[49] Chwei-Sen Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995-1002, July 2004.
[50] Q. Zhu, L. Wang, Y. Guo, C. Liao, and F. Li, “Applying LCC compensation network to dynamic wireless EV charging system,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6557-6567, Oct. 2016.
[51] G. Zheng, P. Zhao, H. Li, and M. Fu, “Small-signal model of an inductive power transfer system using LCC–LCC compensation,” IEEE Trans. Ind. Appl., vol. 58, no. 1, pp. 1201-1210, Jan.-Feb. 2022.
校內:2029-08-15公開