簡易檢索 / 詳目顯示

研究生: 蔡惠瑩
Tsai, Hui-Ying
論文名稱: 發展單顆粒式感應耦合電漿質譜儀用以分析廢水廠中奈米汙染物的發生與移除
Developing Single-Particle Inductively Coupled Plasma-Mass Spectrometry to Detect the Occurrence and Removal of Nanoscale Pollutants in Wastewater Treatment Plants
指導教授: 侯文哲
Hou, Wen-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 41
中文關鍵詞: 單顆粒式感應耦合電漿質譜儀奈米顆粒前處理廢水處理廠
外文關鍵詞: spICP-MS, nanoparticles, pretreatment, wastewater treatment plants
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前奈米材料已被廣泛的添加於民生用品或工業產品之中,隨著奈米科技應用的發展,造成有大量的奈米物質可能於使用後被排放至廢水處理廠中進而進入到環境之中,急需了解奈米汙染物於環境中的濃度以進行奈米顆粒的環境風險評估。本研究中以單顆粒式感應耦合電漿質譜儀調查了7種較常使用的奈米顆粒如Ce、Cu、Pb、Al、Zn、Ti和Ag於台灣南部兩種不同廢水處理程序的廢水處理廠中的去除及趨勢,然而本研究發現以過濾、低速離心和過篩的方式進行前處理會造成樣品中奈米顆粒的損失,在兩個廢水廠中的進流水濃度可發現Al > Zn > Ti > Ce > Cu > Pb > Ag,此結果與全球奈米顆粒的產量趨勢相同,其中粒徑最大為Ti 180-200 nm(以TiO2表示),而粒徑最小為Ag 18-28 nm,另外於兩個不同廢水處理廠中可發現以生物處理之方式奈米顆粒的總去除率可高達95% 以上,以初級處理方式的去除效率則略低,為60-95%。

    Nanomaterials have been incorporated into a wide range of consumer and industrial products. With nanotechnology-based applications increasing rapidly, a large amount of nanomaterials is being discharged into the waste treatment systems before releasing into the receiving waters. To enable the environmental risk assessment of nanoscale pollutants, the information regarding the concentrations of nanoparticles across environmental compartments is urgently needed. In this work, we aimed to characterize 7 common nanoparticles (NPs) relevant to consumer usages including Ce, Cu, Pb, Al, Zn, Ti, and Ag in domestic sewages and to compare their removal across the treatment processes of two municipal wastewater treatment plants (WWTPs) using distinct processes in southern Taiwan using single-particle inductively coupled plasma-mass spectrometry (spICP-MS). The sample pretreatment studies using filtration, low-speed centrifugation, and screening of wastewater samples resulted in significant losses of NPs. The concentrations of the selected NPs measured in raw sewages followed the order of Al > Zn > Ti > Ce > Cu > Pb > Ag and the trend correlated with NPs’ global production volumes. Ti as TiO2 was found to have the largest mean size at 180-200 nm and the smallest NP was Ag of 18-28 nm. The total NP removal was greater at >95% in the secondary biological treatment plant, while the primary treatment plant exhibited a smaller NP removal of 60-95%.

    CONTENTS 摘要 I ABSTRACT II CONTENTS III LIST OF TABLE V LIST OF FIGURE VI CHAPTER 1. INTRODUCTION 1 1.1 Background 1 1.2 Objective 2 CHAPTER 2. LITERATURE REVIEWS 4 2.1 Applications of engineered nanomaterials 4 2.2 Environmental risk assessment of NPs 6 2.3 Characterization of nanomaterials 7 2.4 Current studies on the detection of nanomaterials in environmental matrices 9 CHAPTER 3. MATERIALS AND METHODS 13 3.1 Materials 13 3.2 Sampling collection 13 3.3 Instrumentation 15 3.4 Size Calibration 16 3.5 Size detection limit (DLsize) 16 3.6 Sample pretreatment 17 CHAPTER 4. RESULTS AND DISDUESSION 19 4.1 Size Detection Limits 19 4.2 Effect of Dwell Time on Counting and Sizing of AuNP 20 4.3 Size Effect on Counting and Sizing of AuNPs 22 4.4 Counting and Sizing in the Presence of Common Ionic Species 23 4.5 Evaluation of pretreatment methods 25 4.6 Effect of storage time 26 4.7 Characterization of nanoparticles in the wastewater influents 27 4.8 Removal of nanoparticles across WWTP treatment trains 31 CHAPTER 5. CONCLUSIONS 35 REFERENCE 37

    REFERENCE
    (1) Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311 (5761), 622–627.
    (2) Nanotechnology http://www.strategyr.com/MarketResearch/Nanotechnology_Market_Trends.asp (accessed Jun 2, 2017).
    (3) Farré, M.; Sanchís, J.; Barceló, D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC Trends Anal. Chem. 2011, 30 (3), 517–527.
    (4) Gallego-Urrea, J. A.; Tuoriniemi, J.; Hassellöv, M. Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal. Chem. 2011, 30 (3), 473–483.
    (5) von der Kammer, F.; Ferguson, P. L.; Holden, P. A.; Masion, A.; Rogers, K. R.; Klaine, S. J.; Koelmans, A. A.; Horne, N.; Unrine, J. M. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31 (1), 32–49.
    (6) Yang, Y.; Long, C.-L.; Li, H.-P.; Wang, Q.; Yang, Z.-G. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry. Sci. Total Environ. 2016, 563–564, 996–1007.
    (7) Meisterjahn, B.; Neubauer, E.; Von der Kammer, F.; Hennecke, D.; Hofmann, T. Asymmetrical flow-field-flow fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. J. Chromatogr. A 2014, 1372, 204–211.
    (8) Hagendorfer, H.; Kaegi, R.; Parlinska, M.; Sinnet, B.; Ludwig, C.; Ulrich, A. Characterization of Silver Nanoparticle Products Using Asymmetric Flow Field Flow Fractionation with a Multidetector Approach – a Comparison to Transmission Electron Microscopy and Batch Dynamic Light Scattering. Anal. Chem. 2012, 84 (6), 2678–2685.
    (9) Li, L.; Hartmann, G.; Döblinger, M.; Schuster, M. Quantification of Nanoscale Silver Particles Removal and Release from Municipal Wastewater Treatment Plants in Germany. Environ. Sci. Technol. 2013, 47 (13), 7317–7323.
    (10) Li, L.; Stoiber, M.; Wimmer, A.; Xu, Z.; Lindenblatt, C.; Helmreich, B.; Schuster, M. To What Extent Can Full-Scale Wastewater Treatment Plant Effluent Influence the Occurrence of Silver-Based Nanoparticles in Surface Waters? Environ. Sci. Technol. 2016, 50 (12), 6327–6333.
    (11) Kiser, M. A.; Westerhoff, P.; Benn, T.; Wang, Y.; Pérez-Rivera, J.; Hristovski, K. Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants. Environ. Sci. Technol. 2009, 43 (17), 6757–6763.
    (12) Hadioui, M.; Merdzan, V.; Wilkinson, K. J. Detection and Characterization of ZnO Nanoparticles in Surface and Waste Waters Using Single Particle ICPMS. Environ. Sci. Technol. 2015, 49 (10), 6141–6148.
    (13) Benn, T. M.; Westerhoff, P. Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environ. Sci. Technol. 2008, 42 (11), 4133–4139.
    (14) Foss Hansen, S.; Hansen, S. F.; Larsen, B. H.; Olsen, S. I.; Baun, A. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1, 243–250.
    (15) Vance, M. E.; Kuiken, T.; Vejerano, E. P.; McGinnis, S. P.; Jr, M. F. H.; Rejeski, D.; Hull, M. S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6 (1), 1769–1780.
    (16) 2016 年台灣蟬聯全球第二大半導體生產國 四大子產業同步上揚. TechNews 科技新報.
    (17) Bi, X.; Reed, R.; Westerhoff, P. Chapter 8 - Control of Nanomaterials Used in Chemical Mechanical Polishing/Planarization Slurries during On-site Industrial and Municipal Biological Wastewater Treatment. In Frontiers of Nanoscience; Lead, M. B. and J. R., Ed.; Characterization of Nanomaterials in Complex Environmental and Biological Media; Elsevier, 2015; Vol. 8, pp 247–265.
    (18) Reed, K.; Cormack, A.; Kulkarni, A.; Mayton, M.; Sayle, D.; Klaessig, F.; Stadler, B. Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ. Sci. Nano 2014, 1 (5), 390–405.
    (19) Keller, A. A.; McFerran, S.; Lazareva, A.; Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanoparticle Res. 2013, 15 (6), 1692.
    (20) Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 2012, 14 (9), 1109.
    (21) COMMISSION STAFF WORKING PAPER - Types and uses of nanomaterials, including safety aspects - swd_2012_288_en.pdf.
    (22) Hendren, C. O.; Mesnard, X.; Dröge, J.; Wiesner, M. R. Estimating Production Data for Five Engineered Nanomaterials As a Basis for Exposure Assessment. Environ. Sci. Technol. 2011, 45 (7), 2562–2569.
    (23) Baun, A.; Hartmann, N. B.; Grieger, K.; Kusk, K. O. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 2008, 17 (5), 387–395.
    (24) Scown, T. M.; Aerle, R. van; Tyler, C. R. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit. Rev. Toxicol. 2010, 40 (7), 653–670.
    (25) Matranga, V.; Corsi, I. Toxic effects of engineered nanoparticles in the marine environment: Model organisms and molecular approaches. Mar. Environ. Res. 2012, 76, 32–40.
    (26) Mueller, N. C.; Nowack, B. Exposure Modeling of Engineered Nanoparticles in the Environment. Environ. Sci. Technol. 2008, 42 (12), 4447–4453.
    (27) Gottschalk, F.; Sonderer, T.; Scholz, R. W.; Nowack, B. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 2010, 29 (5), 1036–1048.
    (28) Gottschalk, F.; Scholz, R. W.; Nowack, B. Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles. Environ. Model. Softw. 2010, 25 (3), 320–332.
    (29) Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler, H.; Brunner, S.; Vonmont, H.; Burkhardt, M.; et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. Barking Essex 1987 2008, 156 (2), 233–239.
    (30) Hsu, L.-Y.; Chein, H.-M. Evaluation of nanoparticle emission for TiO2 nanopowder coating materials. J. Nanoparticle Res. 2007, 9 (1), 157–163.
    (31) Gondikas, A. P.; Kammer, F. von der; Reed, R. B.; Wagner, S.; Ranville, J. F.; Hofmann, T. Release of TiO2 Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environ. Sci. Technol. 2014, 48 (10), 5415–5422.
    (32) Malysheva, A.; Lombi, E.; Voelcker, N. H. Bridging the divide between human and environmental nanotoxicology. Nat. Nanotechnol. 2015, 10 (10), 835–844.
    (33) Isaacson, C. W.; Bouchard, D. Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photoionization mass spectrometry. J Chromatogr A 2010, 127 (9), 1506–1512.
    (34) Gray, E. P.; Coleman, J. G.; Bednar, A. J.; Kennedy, A. J.; Ranville, J. F.; Higgins, C. P. Extraction and Analysis of Silver and Gold Nanoparticles from Biological Tissues Using Single Particle Inductively Coupled Plasma Mass Spectrometry. Environ. Sci. Technol. 2013, 47 (24), 14315–14323.
    (35) Mitrano, D. M.; Lesher, E. K.; Bednar, A.; Monserud, J.; Higgins, C. P.; Ranville, J. F. Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry. Environ. Toxicol. Chem. 2012, 31 (1), 115–121.
    (36) Chao, J.; Liu, J.; Yu, S.; Feng, Y.; Tan, Z.; Liu, R.; Yin, Y. Speciation Analysis of Silver Nanoparticles and Silver Ions in Antibacterial Products and Environmental Waters via Cloud Point Extraction-Based Separation. Anal. Chem. 2011, 83 (17), 6875–6882.
    (37) Tuoriniemi, J.; Cornelis, G.; Hassellöv, M. Size Discrimination and Detection Capabilities of Single-Particle ICPMS for Environmental Analysis of Silver Nanoparticles. Anal. Chem. 2012, 84 (9), 3965–3972.
    (38) Roth, G. A.; Neu-Baker, N. M.; Brenner, S. A. SEM analysis of particle size during conventional treatment of CMP process wastewater. Sci. Total Environ. 2015, 508, 1–6.
    (39) Liu, Y.; He, M.; Chen, B.; Hu, B. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2016, 122, 94–102.
    (40) Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83 (24), 9361–9369.
    (41) Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 2014, 48 (17), 10291–10300.
    (42) Montaño, M. D.; Badiei, H. R.; Bazargan, S.; Ranville, J. F. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Environ. Sci. Nano 2014, 1 (4), 338–346.
    (43) Hineman, A.; Stephan, C. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J. Anal. At. Spectrom. 2014, 29 (7), 1252–1257.
    (44) Liu, J.; Murphy, K. E.; MacCuspie, R. I.; Winchester, M. R. Capabilities of Single Particle Inductively Coupled Plasma Mass Spectrometry for the Size Measurement of Nanoparticles: A Case Study on Gold Nanoparticles. Anal. Chem. 2014, 86 (7), 3405–3414.
    (45) Montaño, M. D.; Majestic, B. J.; Jämting, Å. K.; Westerhoff, P.; Ranville, J. F. Methods for the Detection and Characterization of Silica Colloids by Microsecond spICP-MS. Anal. Chem. 2016, 88 (9), 4733–4741.
    (46) Laborda, F.; Jiménez-Lamana, J.; Bolea, E.; Castillo, J. R. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J. Anal. At. Spectrom. 2013, 28 (8), 1220–1232.
    (47) Hadioui, M.; Peyrot, C.; Wilkinson, K. J. Improvements to single particle ICPMS by the online coupling of ion exchange resins. Anal. Chem. 2014, 86 (10), 4668–4674.
    (48) Van Koetsem, F.; Verstraete, S.; Wallaert, E.; Verbeken, K.; Van der Meeren, P.; Rinklebe, J.; Du Laing, G. Use of filtration techniques to study environmental fate of engineered metallic nanoparticles: Factors affecting filter performance. J. Hazard. Mater. 2017, 322, Part A, 105–117.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE