簡易檢索 / 詳目顯示

研究生: 潘建安
Pan, Jian-An
論文名稱: 無線電能傳輸系統之Series-None補償架構定電壓輸出設計與研製
Design and Implementation of Series-None Compensation for Wireless Power Transfer System with Constant Voltage Output
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 無線電能傳輸定電壓輸出
外文關鍵詞: wireless power transfer(WPT), constant voltage output
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製採用Series-None(S-N)補償架構之無線電能傳輸定電壓輸出系統。考量無線電能傳輸系統應用於電能接收端須輕量化之特殊要求,若二次側具有過多電路元件,其所增加之體積、重量與成本,易造成系統難以實現。本文提出一無二次側補償電容之S-N補償架構無線電能傳輸系統之參數設計流程,透過其電路拓樸特性並搭配數位控制器,使系統輸出於固定負載或變動負載情況下,皆能安全且穩定於設定範圍內,達到定電壓輸出之目標。額定功率下電晶體開關達成零電壓切換,因此具有良好傳輸效率,同時也降低成本與電路體積,確保優異的供電品質與應用彈性。本論文首先針對感應線圈電路模型與諧振補償電路特性,進行數值分析與特性比較,推導相關公式並繪製其特性曲線。後續提出詳細之系統參數設計流程,並搭配回授控制方法,以提高整體系統穩定性。為驗證本文設計流程與電路規劃之可行性,本論文將建置兩套不同空氣間隙之無線電能傳輸系統,分別進行各級電路波形實測。測試結果顯示本系統於負載變動情況下,均能維持穩定電壓輸出,且具有理想傳輸效率,因此本論文之研究成果可作為無線電能傳輸系統開發參考。

    This thesis aims to develop a wireless power transfer system (WPT) with constant voltage output using series-none (S-N) compensation topology. The study considers the application of WPT system on particular occasions requiring a lightweight power receiver. This thesis presents the parameters design method of the S-N compensation topology system without a secondary-side compensation capacitor. Through its circuit characteristic and digital controller, the output of the system can safely and stably reach the purpose of constant voltage output when the load is fixed or variable. The power MOSFETs achieve zero voltage switching at rated power, so it has excellent transfer efficiency. It also reduces cost and circuit volume, which guarantees power supply quality and application flexibility. This study first conducts numerical analysis and comparison of the characteristics of the induction coil circuit model and the resonance compensation circuit, deriving the relevant formulas, and describes its characteristic curves. Subsequently, it proposes a detailed system parameters design method and employs feedback control to improve overall system stability. To verify the feasibility of the design method and circuit planning of this thesis, it will build two sets of WPT systems with different air gaps and conduct actual measurement of circuit waveforms at various levels. Constant voltage output experiment results show that the system can maintain approximately constant voltage output under load fluctuations, and the transfer efficiency has outstanding performance. Therefore, the research results from this thesis can be utilized as a reference for the development of WPT system.

    摘 要 I Extended Abstract II 誌謝 XI 目錄 XII 圖目錄 XV 表目錄 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究動機與目的 3 1-4 論文架構 4 第二章 感應電能傳輸系統分析 5 2-1 前言 5 2-2 感應線圈電路模型介紹 6 2-2-1 變壓器耦合電路模型 6 2-2-2 變壓器T型等效模型 6 2-2-3 具有理想變壓器之等效模型 7 2-3 諧振補償電路分析 8 2-4 換流器介紹與功率開關切換特性分析 18 2-4-1 半橋換流器 18 2-4-2 功率電晶體開關之柔性切換分析 19 2-5 整流濾波電路分析 20 2-6 系統動作原理與時序分析 22 第三章 系統軟硬體設計與規劃 27 3-1 前言 27 3-2 半橋換流器、開關驅動電路之設計與實現 28 3-2-1 微控制器簡介 28 3-2-2 功率開關驅動電路、半橋換流器分析與設計 28 3-3 系統參數設計方法 30 3-3-1 諧振頻率操作點之設計分析 31 3-3-2 非諧振頻率操作點之設計分析 32 3-3-3 系統參數設計流程 36 3-4 整流濾波電路設計 41 3-5 回授控制系統之設計與實現 42 3-5-1 PID控制器介紹 42 3-5-2 回授電壓擷取電路設計 44 3-5-3 系統回授控制流程 46 第四章 系統電路模擬與實驗結果 48 4-1 前言 48 4-2 Simplis電路模擬 48 4-2-1 空氣間隙1公分之系統模擬結果 49 4-2-2 空氣間隙4公分之系統模擬結果 53 4-3 感應線圈實作與系統實體圖 57 4-4 開迴路系統實測結果 62 4-4-1 半橋換流器之重要波形量測 62 4-4-2 傳輸端電路之重要波形量測 64 4-4-3 接收端電路之重要波形量測 65 4-4-4 輸出能力與效率實測 68 4-5 閉迴路系統實測結果 74 4-6 實驗結果討論 76 第五章 結論與未來研究方向 78 5-1 結論 78 5-2 未來研究方向 78 參考文獻 80

    [1] M. Trautmann, B. Sanftl, R. Weigel, and A. Koelpin, "Simultaneous Inductive Power and Data Transmission System for Smart Applications," IEEE Circuits and Systems Magazine, vol. 19, no. 3, pp. 23-33, August 2019.
    [2] G. A. Covic and J. T. Boys, "Inductive Power Transfer," Proceedings of the IEEE, vol. 101, no. 6, pp. 1276-1289, June 2013.
    [3] I. I. Nam, R. A. Dougal, and E. Santi, "Novel Unity-Gain Frequency Tracking Control of Series–Series Resonant Converter to Improve Efficiency and Receiver Positioning Flexibility in Wireless Charging of Portable Electronics," IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 385-397, Jan.-Feb. 2015.
    [4] K. Tomita, R. Shinoda, T. Kuroda, and H. Ishikuro, "1W 3.3V-to-16.3V boosting wireless power transfer circuits with vector summing power controller," in IEEE Asian Solid-State Circuits Conference 2011, pp. 177-180, 14-16 Nov. 2011.
    [5] X. Shu, W. Xiao, and B. Zhang, "Wireless Power Supply for Small Household Appliances Using Energy Model," IEEE Access, vol. 6, pp. 69592-69602, Nov. 2018.
    [6] H. Matsumoto, Y. Shibako, and Y. Neba, "Contactless Power Transfer System for AGVs," IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 251-260, Jan. 2018.
    [7] Y. Guo, L. Wang, Q. Zhu, C. Liao, and F. Li, "Switch-On Modeling and Analysis of Dynamic Wireless Charging System Used for Electric Vehicles," IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6568-6579, Oct. 2016.
    [8] C. Xiao, D. Cheng, and K. Wei, "An LCC-C Compensated Wireless Charging System for Implantable Cardiac Pacemakers: Theory, Experiment, and Safety Evaluation," IEEE Transactions on Power Electronics, vol. 33, no. 6, pp. 4894-4905, June 2018.
    [9] I. A. Mashhadi, M. Pahlevani, S. Hor, H. Pahlevani, and E. Adib, "A New Wireless Power-Transfer Circuit for Retinal Prosthesis," IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6425-6439, July 2019.
    [10] S. R. Khan and M. P. Y. Desmulliez, "Implementation of a Dual Wireless Power Transfer and Rotation Monitoring System for Prosthetic Hands," IEEE Access, vol. 7, pp. 107616-107625, August 2019.
    [11] S. Kikuchi, T. Sakata, E. Takahashi, and H. Kanno, "Development of wireless power transfer system for robot arm with rotary and linear movement," in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1616-1621, July 2016.
    [12] G. He, Q. Chen, X. Ren, S. Wong, and Z. Zhang, "Modeling and Design of Contactless Sliprings for Rotary Applications," IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 4130-4140, May 2019.
    [13] N. Madzharov, R. Ilarionov, V. Petkov, and L. Petkov, "Inductive Power Transfer Systems for Rotating Applications," in PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-8, June 2018.
    [14] M. A. Masrur and M. Cox, "A Unique Military Application of Wireless Power Transfer: Wireless Charging Through a Vehicle Seat With Simplified Design Considerations," IEEE Industrial Electronics Magazine, vol. 13, no. 4, pp. 19-30, Dec. 2019.
    [15] Z. Yan, B. Song, Y. Zhang, K. Zhang, Z. Mao, and Y. Hu, "A Rotation-Free Wireless Power Transfer System With Stable Output Power and Efficiency for Autonomous Underwater Vehicles," IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4005-4008, May 2019.
    [16] J. E. James, D. J. Robertson, and G. A. Covic, "Improved AC Pickups for IPT Systems," IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6361-6374, Dec. 2014.
    [17] K. Song et al., "A Rotation-Lightweight Wireless Power Transfer System for Solar Wing Driving," IEEE Transactions on Power Electronics, vol. 34, no. 9, pp. 8816-8830, Sept. 2019.
    [18] V. Shevchenko, O. Husev, R. Strzelecki, B. Pakhaliuk, N. Poliakov, and N. Strzelecka, "Compensation Topologies in IPT Systems: Standards, Requirements, Classification, Analysis, Comparison and Application," IEEE Access, vol. 7, pp. 120559-120580, 27 August 2019.
    [19] W. Zhang and C. C. Mi, "Compensation Topologies of High-Power Wireless Power Transfer Systems," IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4768-4778, June 2016.
    [20] J. Hou, Q. Chen, S. Wong, C. K. Tse, and X. Ruan, "Analysis and Control of Series/Series-Parallel Compensated Resonant Converter for Contactless Power Transfer," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 124-136, March 2015.
    [21] J. L. Villa, J. Sallan, J. F. S. Osorio, and A. Llombart, "High-Misalignment Tolerant Compensation Topology For ICPT Systems," IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 945-951, Feb. 2012.
    [22] T. Kan, T. Nguyen, J. C. White, R. K. Malhan, and C. C. Mi, "A New Integration Method for an Electric Vehicle Wireless Charging System Using LCC Compensation Topology: Analysis and Design," IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1638-1650, Feb. 2017.
    [23] Z. Yan et al., "Fault-Tolerant Wireless Power Transfer System With a Dual-Coupled LCC-S Topology," IEEE Transactions on Vehicular Technology, vol. 68, no. 12, pp. 11838-11846, Dec. 2019.
    [24] Y. Zhang, T. Kan, Z. Yan, Y. Mao, Z. Wu, and C. C. Mi, "Modeling and Analysis of Series-None Compensation for Wireless Power Transfer Systems With a Strong Coupling," IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1209-1215, Feb. 2019.
    [25] Y. Zhang, Z. Yan, Z. Liang, S. Li, and C. C. Mi, "A High-Power Wireless Charging System Using LCL-N Topology to Achieve a Compact and Low-Cost Receiver," IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 131-137, Jan. 2020.
    [26] J. M. Miller, O. C. Onar, and M. Chinthavali, "Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 147-162, March 2015.
    [27] Z. Li, C. Zhu, J. Jiang, K. Song, and G. Wei, "A 3-kW Wireless Power Transfer System for Sightseeing Car Supercapacitor Charge," IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 3301-3316, May 2017.
    [28] K. Song, Z. Li, J. Jiang, and C. Zhu, "Constant Current/Voltage Charging Operation for Series–Series and Series–Parallel Compensated Wireless Power Transfer Systems Employing Primary-Side Controller," IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 8065-8080, Sept. 2018.
    [29] 劉子溢, 「電動車寬頻帶與高效率無線電能傳輸系統研製」, 國立成功大學電機工程學系碩士論文, 2015.
    [30] STMicroelectronics, "UM1670 User manual(discovery-kit-with-stm32f429zi-mcu)," September 2017.
    [31] STMicroelectronics, "STM32F427xx STM32F429xx Datasheet," January 2018.
    [32] Infineon, "IR2110-DataSheet-v01_00," 2019.
    [33] R. Semiconductor, "SCT2080KE Datasheet," 2019.
    [34] STMicroelectronics, "STPS40H100CW Datasheet," 2018.
    [35] STMicroelectronics, "LM217, LM317 Datasheet," 2019.
    [36] STMicroelectronics, "L78 Datasheet Positive voltage regulator ICs," 2018.
    [37] T. Instruments, "LMx24-N, LM2902-N Low-Power, Quad-Operational Amplifiers," 2015.
    [38] STMicroelectronics, "STM32F103x8 STM32F103xB Datasheet," 2015.

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE