| 研究生: |
邱彥穎 Chiu, Yan-Ying |
|---|---|
| 論文名稱: |
二元水迴圈系統觀點下水資源NBS潛力之空間分群特徵
—以台南市鹽水溪流域為例 Addressing Nature-based solutions potential into water resources with the perspective of dualistic water cycle - A Case Study of Yan shui River Basin in Tainan City |
| 指導教授: |
李俊霖
Lee, Chun-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 二元水迴圈系統 、以自然為本的解決方案 、水資源 、潛力指標 、集群分析 、SWAT Model |
| 外文關鍵詞: | Dualistic water cycle, Nature-based Solutions, Water Resources, Potential indicator, SWAT Model, Cluster analysis |
| 相關次數: | 點閱:46 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變遷以及城市化導致未來水資源需求不斷上升,同時使可利用水資源不斷減少,需透過永續的手段確保水的可持續利用。而在國際上,目前「以自然為本的解決方案」(Nature-based solution)概念已被提出作為其中一項重要的在地自然條件下的水資源供給策略,其概念以水迴圈系統觀點作為基礎,透過水、自然、迴圈三者進行聯繫,並且已有許多成功實施的國際案例。台灣每年雖含有豐沛的降雨量,但仰賴水庫供水的模式,仍使乾季產生缺水情形日益嚴峻,故應嘗試以NBS和水迴圈系統角度重新思考運用現有豐沛降雨水資源的潛在條件。
本研究選定近幾年缺水情形嚴重之台南市鹽水溪流域,以近期文獻中提出之「二元水迴圈系統」與「環境潛力」兩者觀點,建構評估實施NBS於水資源利用之面向與潛力,包含水資源消耗、可利用水資源、水資源儲存三大面向及細項指標,爾後透過SWAT水文模型對研究範圍水文進行建模,並盤點在地水資源供給潛力,接著利用自來水消耗資料與土地使用等資料對地區水資源消耗進行分析,最後透過集群分析針對流域內子集水區分類,綜整各集水區在不同面向上之空間差異及潛力特性。研究結果顯示,流域內各集水區在各項條件上存在時間與空間差異性,在水資源消耗部分,中下游建成地區具備較高用水消耗特性,並以生活、工業用水最高,次要則以沿海地區之養殖漁業以及中游分布之農業灌溉,而在可利用水資源上,不同地區具備不同可利用水資源類別,整體以地表逕流為主,下游建成地區則具備較高可回收廢水,此外,各項可利用水資源以及用水消耗量在豐枯季存在時間差異,豐季具備較高可利用水資源條件,而用水消耗量在枯豐兩季則大致相同,並且豐季可利用水資源在一定程度可支援豐枯季用水消耗量。研究結果有利於對水資源區域化的理解,並且在未來政策上,可特別對中下游地區建置再生水廠以及相關NBS水資源措施,從而更加有效利用水資源。
Climate change and urbanization lead to water demand increasing, keeping the available water loss in the world. Therefore, it is important for managing water resources in a sustainable process. Recently, Nature-based Solutions (NBS) has been proposed as an important local water supply strategy, which based on natural solution from the environment, and have many successful cases in the world. Although Taiwan has abundant rainfall annually, the dependence on reservoir for linear water supply still cause severe water shortage during dry season. Therefore, it is necessary to consider the potential for utilizing the existing abundant water resources from rainfall and addressing the perspective of NBS into local policy. The study focuses on the Yan shui River Basin in Tainan City, which has experienced severe water shortages in recent years, and develop an evaluation framework for implementing NBS into water resource with the perspectives of the "dualistic water cycle system" and "environmental potential". The framework considers three main aspects, including water consumption, available water, and water storage. Then, the SWAT model is used to learn the hydrology of the study area, integrating water consumption and land use data for analyzing social water system. As a result, cluster analysis is used to classify sub watersheds within the basin, summarizing the differences and potential characteristics by spatial analysis. The results show that the built-up areas should have NBS solution to support water supply. Besides, it seems that built area have more potential to implement NBS, and have temporal and spatial differences in various conditions among the sub watersheds within the basin. The study contribute to a comprehensive understanding of regional NBS potential into water resource with spatial analysis and classify every sub watershed characteristic.
1. Abbaspour, K. C. (2013). SWAT-CUP 2012: SWAT calibration and uncertainty programs–a user manual. Eawag: Dübendorf, Switzerland, 103.
2. Albert, C., Brillinger, M., Guerrero, P., Gottwald, S., Henze, J., Schmidt, S., Ott, E., & Schroter, B. (2021). Planning nature-based solutions: Principles, steps, and insights. Ambio, 50(8), 1446-1461. https://doi.org/10.1007/s13280-020-01365-1
3. Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A., & Van Liew, M. W. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
4. Astaraie-Imani, M., Kapelan, Z., Fu, G., & Butler, D. (2012). Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK. Journal of Environmental Management, 112, 1-9.
5. Aytaç, E. (2020). Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means clustering, a demonstration on Western Black Sea Region of Turkey. International soil and water conservation research, 8(3), 321-331.
6. Bauduceau, N., Berry, P., Cecchi, C., Elmqvist, T., Fernandez, M., Hartig, T., Krull, W., Mayerhofer, E., Sandra, N., & Noring, L. (2015). Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities: Final report of the horizon 2020 expert group on'nature-based solutions and re-naturing cities'.
7. Biswas, A. K., & Tortajada, C. (2018). Assessing Global Water Megatrends. In A. K. Biswas, C. Tortajada, & P. Rohner (Eds.), Assessing Global Water Megatrends (pp. 1-26). Springer Singapore. https://doi.org/10.1007/978-981-10-6695-5_1
8. Bush, J., Frantzeskaki, N., Ossola, A., & Pineda-Pinto, M. (2023). Priorities for mainstreaming urban nature-based solutions in Australian cities. Nature-Based Solutions, 3, 100065. https://doi.org/https://doi.org/10.1016/j.nbsj.2023.100065
9. Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1-27.
10. Castellar, J. A. C., Torrens, A., Buttiglieri, G., Monclús, H., Arias, C. A., Carvalho, P. N., Galvao, A., & Comas, J. (2022). Nature-based solutions coupled with advanced technologies: An opportunity for decentralized water reuse in cities. Journal of Cleaner Production, 340, 130660. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130660
11. Chang, H., Sang, X., He, G., Wang, Q., Jiang, S., He, F., Li, H., & Zhao, Y. (2022). Research and Application of the Mutual Feedback Mechanism of a Regional Natural-Social Dualistic Water Cycle: A Case Study in Beijing–Tianjin–Hebei, China. Water, 14(20).
12. Chausson, A., Turner, B., Seddon, D., Chabaneix, N., Girardin, C. A. J., Kapos, V., Key, I., Roe, D., Smith, A., Woroniecki, S., & Seddon, N. (2020). Mapping the effectiveness of nature-based solutions for climate change adaptation. Global Change Biology, 26(11), 6134-6155. https://doi.org/10.1111/gcb.15310
13. Cohen-Schacham, E., Walters, G., Janzen, C., & Maginnis, S. Nature based Solutions to Address Global Societal Challenges; IUCN Commission on Ecosystem Management (CEM) and IUCN World Commission on Protected Areas (WCPA): Gland, Switzerland, 2016. In.
14. Coombes, P. J. (2018). Status of transforming stormwater drainage to a systems approach to urban water cycle management - moving beyond green pilots. Australasian Journal of Water Resources, 22(1), 15-28. https://doi.org/10.1080/13241583.2018.1465376
15. Coombes, P. J., & Barry, M. E. (2008). The relative efficiency of water supply catchments and rainwater tanks in cities subject to variable climate and the potential for climate change. Australasian Journal of Water Resources, 12(2), 85-100.
16. Cui, M., Ferreira, F., Fung, T. K., & Matos, J. S. (2021). Tale of Two Cities: How Nature-Based Solutions Help Create Adaptive and Resilient Urban Water Management Practices in Singapore and Lisbon. Sustainability, 13(18), 10427. https://www.mdpi.com/2071-1050/13/18/10427
17. Davies, C., Lafortezza, R., Hansen, R., DeBellis, Y., Rall, E. L., & Pauleit, S. (2015). Green Infrastructure Planning and Implementation: The status of European green space planning and implementation based on an analysis of selected European city-regions.
18. Dorst, H., van der Jagt, A., Raven, R., & Runhaar, H. (2019). Urban greening through nature-based solutions - Key characteristics of an emerging concept. Sustainable Cities and Society, 49. https://doi.org/ARTN 101620
19. 10.1016/j.scs.2019.101620
20. Du, X., Shao, F., Wu, S., Zhang, H., & Xu, S. (2017). Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Environmental Monitoring and Assessment, 189(7), 335. https://doi.org/10.1007/s10661-017-6035-y
21. Dumitru, A., & Wendling, L. (2021). Evaluating the impact of nature-based solutions: A handbook for practitioners. European Commission EC.
22. Eggermont, H., Balian, E., Azevedo, J. M. N., Beumer, V., Brodin, T., Claudet, J., Fady, B., Grube, M., Keune, H., & Lamarque, P. (2015). Nature-based solutions: new influence for environmental management and research in Europe. GAIA-Ecological perspectives for science and society, 24(4), 243-248.
23. Elmhagen, B., Destouni, G., Angerbjörn, A., Borgström, S., Boyd, E., Cousins, S. A., Dalén, L., Ehrlén, J., Ermold, M., & Hambäck, P. A. (2015). Interacting effects of change in climate, human population, land use, and water use on biodiversity and ecosystem services. Ecology and Society, 20(1).
24. Enteshari, S., Safavi, H. R., & van der Zaag, P. (2020). Simulating the interactions between the water and the socio-economic system in a stressed endorheic basin. Hydrological Sciences Journal, 65(13), 2159-2174.
25. European, C., Directorate-General for, R., & Innovation. (2021). Evaluating the impact of nature-based solutions – A handbook for practitioners. Publications Office of the European Union. https://doi.org/doi/10.2777/244577
26. Fastenrath, S., Bush, J., & Coenen, L. (2020). Scaling-up nature-based solutions. Lessons from the Living Melbourne strategy. Geoforum, 116, 63-72.
27. Fink, H. S. (2016). Human-Nature for Climate Action: Nature-Based Solutions for Urban Sustainability. Sustainability, 8(3). https://doi.org/ARTN 25410.3390/su8030254
28. Frantzeskaki, N. (2019). Seven lessons for planning nature-based solutions in cities. Environmental Science & Policy, 93, 101-111. https://doi.org/10.1016/j.envsci.2018.12.033
29. Frantzeskaki, N., McPhearson, T., Collier, M. J., Kendal, D., Bulkeley, H., Dumitru, A., Walsh, C., Noble, K., Van Wyk, E., Ordonez, C., Oke, C., & Pinter, L. (2019). Nature-Based Solutions for Urban Climate Change Adaptation: Linking Science, Policy, and Practice Communities for Evidence-Based Decision-Making. Bioscience, 69(6), 455-466. https://doi.org/10.1093/biosci/biz042
30. Fritz, M. (2017). Nature-Based Solutions to Climate Change Adaptation in Urban Areas-Linkages Between Science, Policy and Practice. Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice, 1-11. https://doi.org/10.1007/978-3-319-56091-5_1
31. Göbel, P., Dierkes, C., & Coldewey, W. (2007). Storm water runoff concentration matrix for urban areas. Journal of contaminant hydrology, 91(1-2), 26-42.
32. Gómez Martín, E., Máñez Costa, M., & Schwerdtner Máñez, K. (2020). An operationalized classification of Nature Based Solutions for water-related hazards: From theory to practice. Ecological Economics, 167, 106460. https://doi.org/https://doi.org/10.1016/j.ecolecon.2019.106460
33. Gain, A. K., & Giupponi, C. (2015). A dynamic assessment of water scarcity risk in the Lower Brahmaputra River Basin: An integrated approach. Ecological indicators, 48, 120-131.
34. Ha, L. T., Bastiaanssen, W. G. M., Simons, G. W. H., & Poortinga, A. (2023). A New Framework of 17 Hydrological Ecosystem Services (HESS17) for Supporting River Basin Planning and Environmental Monitoring. Sustainability, 15(7), 6182. https://www.mdpi.com/2071-1050/15/7/6182
35. Haase, D. (2009). Effects of urbanisation on the water balance–A long-term trajectory. Environmental Impact Assessment Review, 29(4), 211-219.
36. Han, Z., An, W., Yang, M., & Zhang, Y. (2020). Assessing the impact of source water on tap water bacterial communities in 46 drinking water supply systems in China. Water Research, 172, 115469. https://doi.org/https://doi.org/10.1016/j.watres.2020.115469
37. Hobbie, S. E., & Grimm, N. B. (2020). Nature-based approaches to managing climate change impacts in cities. Philos Trans R Soc Lond B Biol Sci, 375(1794), 20190124. https://doi.org/10.1098/rstb.2019.0124
38. Hoyer, J., Dickhaut, W., Kronawitter, L., & Weber, B. (2011). Water Sensitive Urban Design: Principles and Inspiration for Sustainable Stormwater Management in the City of the Future: Jovis. In: Berlin.
39. Iucn. (2020). Global standard for nature-based solutions. A user-friendly framework for the verification, design and scaling up of NbS. Accessed, 15(December), 2022.
40. Jung, K. Y., Lee, K.-L., Im, T. H., Lee, I. J., Kim, S., Han, K.-Y., & Ahn, J. M. (2016). Evaluation of water quality for the Nakdong River watershed using multivariate analysis. Environmental Technology & Innovation, 5, 67-82. https://doi.org/https://doi.org/10.1016/j.eti.2015.12.001
41. Jusoh, H. H. W., Juahir, H., Hanapi, N. H. M., Afandi, N. Z. M., Nasir, N. M., Kurniawan, S. B., Zakaria, N., & Nor, S. M. M. (2024). Harvesting solutions: Discover the evolution of agriculture wastewater treatment through comprehensive bibliometric analysis using scopus database 1971-2023. Desalination and Water Treatment, 317, 100291. https://doi.org/https://doi.org/10.1016/j.dwt.2024.100291
42. Kabisch, N., Frantzeskaki, N., & Hansen, R. (2022). Principles for urban nature-based solutions. Ambio, 51(6), 1388-1401. https://doi.org/10.1007/s13280-021-01685-w
43. Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., Haase, D., Knapp, S., Korn, H., Stadler, J., Zaunberger, K., & Bonn, A. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 21(2). https://doi.org/Artn 3910.5751/Es-08373-210239
44. Kallis, G. (2010). Coevolution in water resource development: The vicious cycle of water supply and demand in Athens, Greece. Ecological Economics, 69(4), 796-809.
45. Katsou, E., Nika, C.-E., Buehler, D., Marić, B., Megyesi, B., Mino, E., Babí Almenar, J., Bas, B., Bećirović, D., & Bokal, S. (2020). Transformation tools enabling the implementation of nature-based solutions for creating a resourceful circular city. Blue-Green Systems, 2(1), 188-213.
46. Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment, 610-611, 997-1009. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.08.077
47. Konijnendijk, C. C. (2021). What Are Nature-Based Solutions? The Potential of Nature in Cities. In E. Croci & B. Lucchitta (Eds.), Nature-Based Solutions for More Sustainable Cities – A Framework Approach for Planning and Evaluation (pp. 3-10). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80043-636-720211001
48. Koop, S. H. A., & van Leeuwen, C. J. (2017). The challenges of water, waste and climate change in cities. Environment Development and Sustainability, 19(2), 385-418. https://doi.org/10.1007/s10668-016-9760-4
49. Kotir, J. H., Smith, C., Brown, G., Marshall, N., & Johnstone, R. (2016). A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana. Science of the Total Environment, 573, 444-457. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.08.081
50. Krauze, K., & Wagner, I. (2019). From classical water-ecosystem theories to nature-based solutions - Contextualizing nature-based solutions for sustainable city. Science of the Total Environment, 655, 697-706. https://doi.org/10.1016/j.scitotenv.2018.11.187
51. Liang, J., Xie, J., Wang, X., Wang, S., & Yu, M. (2022). Visualization of Multi Scenario Water Resources Regulation Based on a Dualistic Water Cycle Framework. Water, 14(7).
52. Lin, K., Chen, H., Xu, C.-Y., Yan, P., Lan, T., Liu, Z., & Dong, C. (2020). Assessment of flash flood risk based on improved analytic hierarchy process method and integrated maximum likelihood clustering algorithm. Journal of Hydrology, 584, 124696. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.124696
53. Linh, N. S., Ahmed, F., & Loc, H. H. (2022). Applications of Nature-Based Solutions in Urban Water Management in Singapore, Thailand and Vietnam: A Review. In N. Pachova, P. Velasco, A. Torrens, & V. Jegatheesan (Eds.), Regional Perspectives of Nature-based Solutions for Water: Benefits and Challenges (pp. 101-126). Springer International Publishing. https://doi.org/10.1007/978-3-031-18412-3_5
54. Liu, D., Tian, F., Lin, M., & Sivapalan, M. (2015). A conceptual socio-hydrological model of the co-evolution of humans and water: case study of the Tarim River basin, western China. Hydrology and Earth System Sciences, 19(2), 1035-1054.
55. Liu, H., Jia, Y., Niu, C., Gan, Y., & Xu, F. (2018). Evaluation of regional water security in China based on dualistic water cycle theory. Water Policy, 20(3), 510-529.
56. Locatelli, L., Mark, O., Mikkelsen, P. S., Arnbjerg-Nielsen, K., Deletic, A., Roldin, M., & Binning, P. J. (2017). Hydrologic impact of urbanization with extensive stormwater infiltration. Journal of Hydrology, 544, 524-537. https://doi.org/10.1016/j.jhydrol.2016.11.030
57. Lu, S., Zhang, X., Bao, H., & Skitmore, M. (2016). Review of social water cycle research in a changing environment. Renewable and Sustainable Energy Reviews, 63, 132-140. https://doi.org/https://doi.org/10.1016/j.rser.2016.04.071
58. Maksimović, Č., Prodanović, D., Boonya-Aroonnet, S., Leitao, J. P., Djordjević, S., & Allitt, R. (2009). Overland flow and pathway analysis for modelling of urban pluvial flooding. Journal of Hydraulic Research, 47(4), 512-523.
59. Mather, P. M., & Doornkamp, J. C. (1970). Multivariate Analysis in Geography with Particular Reference to Drainage-Basin Morphometry. Transactions of the Institute of British Geographers(51), 163-187. https://doi.org/10.2307/621768
60. Mayer, A., Winkler, R., & Fry, L. (2014). Classification of watersheds into integrated social and biophysical indicators with clustering analysis. Ecological indicators, 45, 340-349. https://doi.org/https://doi.org/10.1016/j.ecolind.2014.04.030
61. McDonald, G. T., & Brown, A. L. (1984). The land suitability approach to strategic land-use planning in urban fringe areas. Landscape Planning, 11(2), 125-150. https://doi.org/https://doi.org/10.1016/0304-3924(84)90035-2
62. McHarg, I. (1969). Design with nature. In: The Natural History Press.
63. Meineke, E. K., & Frank, S. D. (2018). Water availability drives urban tree growth responses to herbivory and warming. Journal of Applied Ecology, 55(4), 1701-1713.
64. Meng, X. L. (2022). Understanding the effects of site-scale water-sensitive urban design (WSUD) in the urban water cycle: a review. Blue-Green Systems, 4(1), 45-57. https://doi.org/10.2166/bgs.2022.026
65. Monteiro, C. M., Mendes, A. M., & Santos, C. (2023). Green Roofs as an Urban NbS Strategy for Rainwater Retention: Influencing Factors—A Review. Water, 15(15).
66. Moosavi, S., Browne, G. R., & Bush, J. (2021). Perceptions of nature-based solutions for Urban Water challenges: Insights from Australian researchers and practitioners. Urban Forestry & Urban Greening, 57, 126937.
67. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
68. Mullaney, J., Lucke, T., & Trueman, S. J. (2015). A review of benefits and challenges in growing street trees in paved urban environments. Landscape and urban planning, 134, 157-166.
69. Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1), 86-97.
70. Nelson, D. R., Bledsoe, B. P., Ferreira, S., & Nibbelink, N. P. (2020). Challenges to realizing the potential of nature-based solution. Current Opinion in Environmental Sustainability, 45, 49-55. https://doi.org/10.1016/j.cosust.2020.09.001
71. Nesshover, C., Assmuth, T., Irvine, K. N., Rusch, G. M., Waylen, K. A., Delbaere, B., Haase, D., Jones-Walters, L., Keune, H., Kovacs, E., Krauze, K., Kulvik, M., Rey, F., van Dijk, J., Vistad, O. I., Wilkinson, M. E., & Wittmer, H. (2017). The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Science of the Total Environment, 579, 1215-1227. https://doi.org/10.1016/j.scitotenv.2016.11.106
72. Ng, P. J. H., & Zheng, S. (2022). Water Security in the Face of Climate Change: Singapore’s Way. In A. K. Biswas & C. Tortajada (Eds.), Water Security Under Climate Change (pp. 21-32). Springer Singapore. https://doi.org/10.1007/978-981-16-5493-0_2
73. Nie, W., Yuan, Y., Kepner, W., Nash, M. S., Jackson, M., & Erickson, C. (2011). Assessing impacts of Landuse and Landcover changes on hydrology for the upper San Pedro watershed. Journal of Hydrology, 407(1-4), 105-114.
74. Noiva, K., Fernández, J. E., & Wescoat, J. L. (2016). Cluster analysis of urban water supply and demand: Toward large-scale comparative sustainability planning. Sustainable Cities and Society, 27, 484-496. https://doi.org/https://doi.org/10.1016/j.scs.2016.06.003
75. Nunes Carvalho, T. M., de Souza Filho, F. d. A., & Porto, V. C. (2021). Urban water demand modeling using machine learning techniques: Case study of Fortaleza, Brazil. Journal of Water Resources Planning and Management, 147(1), 05020026.
76. O’Hogain, S., & McCarton, L. (2018). Hybrid Infrastructure: Local, Regional and Global Potential of Nature Based Solutions. In S. O'Hogain & L. McCarton (Eds.), A Technology Portfolio of Nature Based Solutions: Innovations in Water Management (pp. 105-113). Springer International Publishing. https://doi.org/10.1007/978-3-319-73281-7_6
77. Oral, H. V., Carvalho, P., Gajewska, M., Ursino, N., Masi, F., Hullebusch, E. D. v., Kazak, J. K., Exposito, A., Cipolletta, G., & Andersen, T. R. (2020). A review of nature-based solutions for urban water management in European circular cities: a critical assessment based on case studies and literature. Blue-Green Systems, 2(1), 112-136.
78. Pauleit, S., Zölch, T., Hansen, R., Randrup, T. B., & Konijnendijk van den Bosch, C. (2017). Nature-Based Solutions and Climate Change – Four Shades of Green. In N. Kabisch, H. Korn, J. Stadler, & A. Bonn (Eds.), Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice (pp. 29-49). Springer International Publishing. https://doi.org/10.1007/978-3-319-56091-5_3
79. Peñacoba-Antona, L., Gómez-Delgado, M., & Esteve-Núñez, A. (2021). Multi-Criteria Evaluation and Sensitivity Analysis for the Optimal Location of Constructed Wetlands (METland) at Oceanic and Mediterranean Areas. International Journal of Environmental Research and Public Health, 18(10).
80. Peng, J., Tong, H., Liu, X., Feng, Y., Zhu, Y., Wu, Y., Chu, Z., & Zheng, B. (2023). Comprehensive evaluation of water resources and environmental carrying capacity based on dualistic water cycle analysis and its application in the Tuo River Basin, China. Ecological indicators, 146, 109897. https://doi.org/https://doi.org/10.1016/j.ecolind.2023.109897
81. Qin, D., Lu, C., Liu, J., Wang, H., Wang, J., Li, H., Chu, J., & Chen, G. (2014). Theoretical framework of dualistic nature–social water cycle. Chinese Science Bulletin, 59(8), 810-820. https://doi.org/10.1007/s11434-013-0096-2
82. Raadgever, T., & Hegger, D. (2018). Flood risk management strategies and governance. Springer.
83. Ramya, S., & Devadas, V. (2019). Integration of GIS, AHP and TOPSIS in evaluating suitable locations for industrial development: A case of Tehri Garhwal district, Uttarakhand, India. Journal of Cleaner Production, 238. https://doi.org/ARTN 11787210.1016/j.jclepro.2019.117872
84. Raymond, C. M., Frantzeskaki, N., Kabisch, N., Berry, P., Breil, M., Nita, M. R., Geneletti, D., & Calfapietra, C. (2017). A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environmental Science & Policy, 77, 15-24. https://doi.org/10.1016/j.envsci.2017.07.008
85. Rohner, P. (2018). Water: A Megatrends Perspective. In A. K. Biswas, C. Tortajada, & P. Rohner (Eds.), Assessing Global Water Megatrends (pp. 27-39). Springer Singapore. https://doi.org/10.1007/978-981-10-6695-5_2
86. Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65.
87. Santos, P. P., Pereira, S., Zêzere, J. L., Tavares, A. O., Reis, E., Garcia, R. A. C., & Oliveira, S. C. (2020). A comprehensive approach to understanding flood risk drivers at the municipal level. Journal of Environmental Management, 260, 110127. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110127
88. Saraçli, S., Doğan, N., & Doğan, İ. (2013). Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of Inequalities and Applications, 2013(1), 203. https://doi.org/10.1186/1029-242X-2013-203
89. Sarabi, S. E., Han, Q., Romme, A. G. L., de Vries, B., & Wendling, L. (2019). Key Enablers of and Barriers to the Uptake and Implementation of Nature-Based Solutions in Urban Settings: A Review. Resources-Basel, 8(3). https://doi.org/ARTN 12110.3390/resources8030121
90. Schmidt, S., Guerrero, P., & Albert, C. (2022). Advancing Sustainable Development Goals with localised nature-based solutions: Opportunity spaces in the Lahn river landscape, Germany. Journal of Environmental Management, 309. https://doi.org/ARTN 11469610.1016/j.jenvman.2022.114696
91. Simonovic, S. P. (2012). Managing water resources: methods and tools for a systems approach. Routledge.
92. Sivapalan, M. (2015). Debates—Perspectives on socio‐hydrology: Changing water systems and the “tyranny of small problems”—Socio‐hydrology. Water Resources Research, 51(6), 4795-4805.
93. Sánchez, R., José, E. S., Fermoso, J., Gómez, S., & González, M. (2023). Types of nature-based solutions for water, their functions and suitability. In Regional Perspectives of Nature-based Solutions for Water: Benefits and Challenges (pp. 11-34). Springer.
94. Sokal, R. R., & Rohlf, F. J. (1962). The Comparison of Dendrograms by Objective Methods. Taxon, 11(2), 33-40. https://doi.org/10.2307/1217208
95. Son, C. T., Giang, N. T. H., Thao, T. P., Nui, N. H., Lam, N. T., & Cong, V. H. (2020). Assessment of Cau River water quality assessment using a combination of water quality and pollution indices. Journal of Water Supply: Research and Technology—AQUA, 69(2), 160-172.
96. Sowińska-Świerkosz, B., & García, J. (2022). What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nature-Based Solutions, 2. https://doi.org/10.1016/j.nbsj.2022.100009
97. Stathi, E., Kastridis, A., & Myronidis, D. (2023). Analysis of Hydrometeorological Characteristics and Water Demand in Semi-Arid Mediterranean Catchments under Water Deficit Conditions. Climate, 11(7).
98. Tsatsou, A., Frantzeskaki, N., & Malamis, S. (2023). Nature-based solutions for circular urban water systems: A scoping literature review and a proposal for urban design and planning. Journal of Cleaner Production, 394, 136325. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.136325
99. Tyllianakis, E., Martin-Ortega, J., & Banwart, S. A. (2022). An approach to assess the world’s potential for disaster risk reduction through nature-based solutions. Environmental Science & Policy, 136, 599-608. https://doi.org/https://doi.org/10.1016/j.envsci.2022.07.021
100. Tzoulas, K., Galan, J., Venn, S., Dennis, M., Pedroli, B., Mishra, H., Haase, D., Pauleit, S., Niemelä, J., & James, P. (2021). A conceptual model of the social–ecological system of nature-based solutions in urban environments. Ambio, 50, 335-345.
101. Un-Water, U. N. W. W. A. P. (2018). Nature-based Solutions for Water 2018: The United Nations World Water Development Report 2018. https://wedocs.unep.org/20.500.11822/32857
102. Van Emmerik, T., Li, Z., Sivapalan, M., Pande, S., Kandasamy, J., Savenije, H., Chanan, A., & Vigneswaran, S. (2014). Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River basin, Australia. Hydrology and Earth System Sciences, 18(10), 4239-4259.
103. Von Bertalanffy, L. (2010). General systems theory. The science of synthesis: exploring the social implications of general systems theory, 103.
104. Wang, H., & Jia, Y. (2016). Theory and study methodology of dualistic water cycle in river basins under changing conditions. J. Hydraul. Eng, 47, 1219-1226.
105. Wang, X., & Xu, Y. (2019). An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index. IOP Conference Series: Materials Science and Engineering,
106. Wu, T., Song, H., Wang, J., & Friedler, E. (2020). Framework, Procedure, and Tools for Comprehensive Evaluation of Sustainable Stormwater Management: A Review. Water, 12(5). https://doi.org/10.3390/w12051231
107. Zhang, S., Fan, W., Yi, Y., Zhao, Y., & Liu, J. (2017). Evaluation method for regional water cycle health based on nature-society water cycle theory. Journal of Hydrology, 551, 352-364.
108. Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., & Ye, L. (2022). A review of the application of machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107-116. https://doi.org/https://doi.org/10.1016/j.eehl.2022.06.001
1. 經濟部水利署(2014)綜合流域治理計畫,經濟部水利署。
2. 經濟部(2017)前瞻基礎建設計畫-水環境建設全國水環境改善計畫,行政院核訂。
3. 經濟部水利署(2018)參與歐盟 H2020 計畫「氣候變遷國際會議-歐盟 H2020
4. 再生計畫啟動會議(kick-off meeting)」,經濟部水利署水利規劃試驗所出版。
5. 經濟部水利署(2019)水利法逕流分擔與出流管制法規彙編,經濟部水利署。
6. 經濟部水利署(2019)參與「歐盟 H2020『再生計畫』第三次會議(3rd GA meeting)」,經濟部水利署水利規劃試驗所出版。
7. 經濟部水利署(2019)連結歐盟NBS 計畫及共同開發評估模式,經濟部水利署水利規劃試驗所出版。
8. 經濟部水利署(2020)流域整體改善與調適規劃(110-115年),經濟部水利署水利規劃試驗所出版。
9. 經濟部水利署(2021)臺灣各區水資源經理基本計畫(核定本),經濟部水利署水利規劃試驗所出版。
10. 經濟部水利署(2023) 水資源領域氣候變遷調適行動方案(112-115年)初版,經濟部水利署水利規劃試驗所出版。
11. 黃書禮、游輝禎、鄭秀藝 (1988)。 土地使用適宜性分析-評估方法與應用。都市與計劃, 15,頁 1-29。
12. 黃書禮(2000)。生態土地使用規劃(第七章冊)。台北市:詹氏書局。
13. 台南市政府(2020)。台南市氣候變遷調適計畫修正版
14. 吳采伊(2023)。水資源消耗與潛在水資源供給空間分析-以台南市鹽水溪集水區為例,國立成功大學都市計劃學系,台南市。
15. 林子閎(2019)。共效益觀點下綠色基盤設施規劃與協同權衡效應之研究─以鹽水溪流域為例,國立成功大學都市計劃學系,台南市。
16. 鐘閔光、林俐玲(2015)。土壤水文評估模式之介紹。水土保持學報,47(4),1539-1550。
17. 經濟部水利署(2018)逕流分擔技術手冊(草案),經濟部水利署。
18. 經濟部水利署(2015)鹽水溪及南科相關排水整體治理規劃檢討。經濟部水利署水利規劃試驗所出版
19. 經濟部水利署(2015)鹽水溪治理計畫(含支流?拔林溪)第一次修正版。經濟部水利署水利規劃試驗所出版
20. 經濟部水利署(2020)鹽水溪(含支流?拔林溪)河川環境管理規劃。黎明工程顧問股份有限公司
21. 經濟部水利署(2020)。鹽水溪流域整體改善與調適規劃報告(1/2)。黎明工程顧問股份有限公司