簡易檢索 / 詳目顯示

研究生: 許峻嘉
Hsu, Chung-Chia
論文名稱: 一基於生產量驅動且支援多重取樣率電路之高階合成演算法
A Throughput Driven High Level Synthesis Algorithm to Synthesize Circuits with Multiple Sampling Rates
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 31
中文關鍵詞: 高階合成多重取樣率
外文關鍵詞: High-Level Synthesis, Multiple Sampling Rates
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今高階合成(High-Level Synthesis)演算法主要在單一時脈頻率下合成單一取樣率之電路,在本論文中我們提出一個基於生產量驅動的高階合成演算法,可將多重取樣率(Multiple Sampling Rates)之複雜電路合成出擁有多重時脈頻率(Multiple Clock Domains)的電路,演算法首先分析電路中的每個運算區塊並探索出可行的時脈頻率,目的是找出每個區塊盡可能越低的時脈頻率並且達到使用者給定之生產量要求,進而降低電路的功率消耗。最後演算法在區塊間插入最佳化深度之緩衝器來完成電路,實驗數據顯示使用我們方法產生之電路相比於傳統高階合成方法產生之電路可降低87%的功率消耗。

    Current High-level synthesis (HLS) algorithms mainly synthesize components with single sampling rate in a single clock domain. In this work we present a novel throughput driven HLS algorithm that can synthesize a complex hardware block with multiple sampling rates into a design with multiple clock domains. The algorithm first profiles components in a complex hardware block and explores possible clock domains of each component. The goal is to identify the lowest possible clock rate of each component that meets the throughput constraint, thereby yielding the lowest power consumption. The buffers with optimal depth are then inserted between components to complete the design. Experimental results show that our approach achieved 87% power reduction compared to the traditional HLS approach.

    CHAPTER 1 INTRODUCTION ................................................................................ 1 CHAPTER 2 RELATED WORK .............................................................................. 3 2.1 High-Level Synthesis for Streaming Application .......................................... 3 2.2 Summary ........................................................................................................ 6 CHAPTER 3 PROBLEM FORMULATION ............................................................ 9 3.1 Models and Parameters ................................................................................ 10 3.2 Throughput Calculation ................................................................................ 12 3.2.1 Average Throughput ............................................................................ 12 3.2.2 Stall Time Calculation ......................................................................... 15 CHAPTER 4 PROPOSED ALGORITHMS ........................................................... 17 4.1 Profiling ........................................................................................................ 18 4.2 Module Selection .......................................................................................... 19 4.3 Buffer Insertion ............................................................................................ 20 CHAPTER 5 EXPERIMENTAL RESULTS .......................................................... 23 5.1 Case Study on JPEG ..................................................................................... 23 5.2 Simulation Environment and Setup .............................................................. 24 5.3 Result Comparisons with Traditional Approach .......................................... 24 5.4 Error Comparisons ....................................................................................... 27 CHAPTER 6 CONCLUSIONS................................................................................. 28 REFERENCE 29

    [1] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, “High-Level Synthesis: Introduction to Chip and System Design,” Kluwer Academic Publishers, 1992.
    [2] Xilinx Vivado HLS (www.xilinx.com/products/design-tools/vivado/)
    [3] NEC CyberWorkBench (www.cyberworkbench.com)
    [4] Synopsys Synphony (www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx)
    [5] E. Lee and D. Messerschmitt, “Synchronous Data Flow,” Proceedings of the IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.
    [6] B. C. Schafer, “Automatic Partitioning of Behavioral Descriptions for High-Level Synthesis with Multiple Internal Throughputs,” in Electronic System Level Synthesis Conference (ESLsyn), pp. 1-6, 2013.
    [7] S. Li, Y. Liu, X.S. Hu, X. He, Y. Zhang, P. Zhang and H. Yang, “Optimal Partition with Block-Level Parallelization in C-to-RTL Synthesis for Streaming Applications,” in Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 225-230, 2013.
    [8] J. Cong, M. Huang, B. Liu, P. Zhang and Y. Zou, “Combing Module Selection and Replication for Throughput-Driven Streaming Programs,” in Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1018-1023, 2012.
    [9] J. Zhu, I. Sander and A. Jantsch, “Energy Efficient Streaming Applications with Guaranteed Throughput on MPSoCs,” in International Conference on Embedded Software (EMSOFT), pp. 119-128, 2008.

    無法下載圖示 校內:2019-01-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE