| 研究生: |
楊浚霆 Yang, Jun-Ting |
|---|---|
| 論文名稱: |
以溫度波分析法量測原子層沉積氧化鋁薄膜熱傳導係數之研究 Study on Measuring Thermal Conductivity for Atomic Layer Deposition of Aluminium Oxide Thin Films by Temperature Wave Analysis Method |
| 指導教授: |
温昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 溫度波分析法 、原子層沉積 、氧化鋁薄膜 、熱傳導係數 、實驗量測 |
| 外文關鍵詞: | Temperature Wave Analysis Method, Nanofilms, Atomic Layer Deposition, Thermal conductivity |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用溫度波分析法量測由原子層沉積氧化鋁薄膜之熱傳導係數,找出不同的薄膜厚度所適合的溫度振盪頻率,並針對溫度、晶格排列、厚度等可能對薄膜熱傳導係數造成影響的因素進行研究。
經量測後發現在常溫下,50 nm 和 100 nm 氧化鋁薄膜溫度振盪頻率適用的頻率分別為 0.011 Hz 和 0.015 Hz;熱傳導係數分別為 1.76 (W/mK)、1.97 (W/mK),將量測的數據與文獻比較,在驗證實驗方法準確後,本文對不同厚度之氧化鋁薄膜進行研究分析。將薄膜進行 1000 °C 高溫退火,使其從非晶相轉換成α 相,量測後發現 α 相與非晶相氧化鋁薄膜之熱傳導係數有著約 10 %的差距。將溫度變化範圍控制在 290K~360 K,發現任何厚度和晶格排列的氧化鋁薄膜的熱傳導係數會隨著溫度上升而增加,由研究結果中可發現到透過不同溫度、晶格排列、厚度對薄膜熱傳導係數皆有著顯著的影響。
This study uses temperature wave analysis method to measure the thermal conductivity of aluminium oxide thin films by atomic layer deposition. It aims to identify suitable temperature oscillation frequencies for different film thicknesses and investigates factors such as temperature, crystal structure, and thickness that may affect the thermal conductivity of the films.
After measurement, it is found that at room temperature, the temperature oscillation frequencies of the 50 nm and 100 nm aluminium oxide thin films are 0.011 Hz and 0.015 Hz, respectively. The thermal conductivities are measured as 1.76 W/m·K for the 50 nm film and 1.97 W/m·K for the 100 nm film. These values are compared with literature data to validate the experimental methods.
The films are subjected to high-temperature annealing to transform from the amorphous phase to the α phase. Measurements reveal an approximately 10% difference in thermal conductivity between α phase and amorphous aluminium oxide thin films. Controlling the temperature range from 290 K to 360 K, it is observed that the thermal conductivity of aluminium oxide thin films, regardless of thickness and crystal structure, increases with temperature. The results indicate significant influences of temperature, crystal structure, and thickness on the thermal conductivity of the films.
[1] N. Yüksel, The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials. IntechOpen, 2016.
[2] J. S. Q. Zeng, P. C. Stevens, A. J. Hunt, R. Grief, and D. Lee, “Thin-film-heater thermal conductivity apparatus and measurement of thermal conductivity of silica aerogel,” International Journal of Heat and Mass Transfer, vol. 39, no. 11, pp. 2311–2317, 1996.
[3] E. Jansen and E. Obermeier, “Thermal conductivity measurements on thin films basedon micromechanical devices,” Journal of micromechanics and microengineering, vol. 6, no. 1, pp. 118–121, 1996.
[4] J. C. Lambropoulos et al., “Thermal conductivity of dielectric thin films,” Journal of Applied Physics, vol. 66, no. 9, pp. 4230–4242, 1989.
[5] D. G. Cahill and R. O. Pohl, “Thermal conductivity of amorphous solids above the plateau,” vol. 35, no. 8, pp. 4067–4073, 1987.
[6] S. M. Lee and D. G. Cahill, “Heat transport in thin dielectric films,” Journal of Applied Physics, vol. 81, no. 6, pp. 2590–2595, 1997.
[7] J. Alvarez-Quintana and J. Rodríguez-Viejo, “Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample,” Sensors and actuators. A, Physical, vol. 142, no. 1, pp. 232–236, 2008.
[8] D. G. Chaill, “APPARATUS AND METHOD FOR MEASURING THERMAL CONDUCTIVITY,” 2005.
[9] P. Jiang, X. Qian, and R. Yang, “Tutorial: Time-domain thermoreflectance (TDTR) forthermal property characterization of bulk and thin film materials,” Journal of Applied Physics, vol. 124, no. 16, 2018.
[10] R. A. Angstrom, Phil., Mag. 25, 130, 1863.
[11] T. Hashimoto and J. Morikawa, “傅立葉變換型温度波熱分析法, ” The Japan Society of Calorimetry and Thermal Analysis, vol 27, no 3, pp. 141–151, 2000.
[12] S. M. Lee, D. G. Cahill, and T. H. Allen, “Thermal conductivity of sputtered oxide films,” Physical review. B, Condensed matter, vol. 52, no. 1, pp. 253–257, 1995.
[13] M. L. Grilli, D. Ristau, M. Dieckmann, and U. Willamowski, “Thermal conductivity of e-beam coatings,” Applied physics. A, Materials science & processing, vol. 71, no. 1, pp. 71–76, 2000.
[14] I. Stark, M. Stordeur, and F. Syrowatka, “Thermal conductivity of thin amorphous alumina films,” Thin Solid Films, vol. 226, no. 1, pp. 185–190, 1993.
[15] E. A. Scott, J. T. Gaskins, S. W. King, and P. E. Hopkins, “Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon,” APL Materials, vol. 6,no. 5, 2018.
[16] J. T. Gaskins et al., “Review—Investigation and Review of the Thermal, Mechanical, Electrical, Optical, and Structural Properties of Atomic Layer Deposited High-k Dielectrics: Beryllium Oxide, Aluminum Oxide, Hafnium Oxide, and Aluminum Nitride,” vol. 6, no. 10, pp. N189–N208, 2017.
[17] M. E. DeCoster et al., “Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films,” Thin solid films, vol. 650, pp. 71–77, 2018.
[18] B. Abad, J. Maiz, and M. Martín-González, “Rules to Determine Thermal Conductivity and Density of Anodic Aluminum Oxide (AAO) Membranes,” Journal of Physical Chemistry C, vol. 120, no. 10, pp. 5361–5370, 2016.
[19] J. Paterson, D. Singhal, Dimitri Tainoff, J. Richard, and O. Bourgeois, “Thermal conductivity and thermal boundary resistance of amorphous Al2O3 thin films on germanium and sapphire,” Journal of applied physics, vol. 127, no. 24, 2020.
[20] R. Schley, A. Berkovitz, S, Rinott, I, Shammass, A. Blumkin, and J. Steinhauer, “Planck Distribution of Phonons in a Bose-Einstein Condensate,” Physical review letters, vol. 111, no. 5, 2013.
[21] M. Handwerg, R. Mitdank, Z. Galazka, and S. F. Fischer, “Temperature-dependent thermal conductivity in Mg-doped and undopedβ-Ga2O3bulk-crystals,”Semiconductor Science and Technology, vol. 30, no. 2, p. 024006, 2015.
[22] Q. Li, J. Wei, H. Sun, K. Zhang, Z. Huang, and L. Zhang, “Temperature dependent thermal conductivity and transition mechanism in amorphous and crystalline Sb2Te3 thin films,” vol. 7, no. 1, 2017.
[23] J. M. Ziman, “Electrons and phonons : the theory of transport phenomena in solids, ” Oxford: Clarendon Press, New York, 2007.
[24] 傅子豪, “微電子65奈米世代後銅薄膜阻抗係數之探討,” 國立交通大學, 2006.
[25] H. van Houten, B. J. van Wees, and C. W. J. Beenakker, “Quantum and Classical Ballistic Transport in Constricted Two-Dimensional Electron Gases,” Springer series in solid-state sciences, pp. 198–207, 1988.
[26] S. M. Rossnagel, “Thin film deposition with physical vapor deposition and related technologies,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, no. 5, pp. S74–S87, 2003.
[27] S. Ahmadi et al., “The Role of Physical Techniques on the Preparation of Photoanodesfor Dye Sensitized Solar Cells,” International Journal of Photoenergy, vol. 2014, pp. 1–19, 2014.
[28] H. Ghazal and N. Sohail, “Sputtering Deposition,” InTech, Oct. 31, 2022.
[29] L. Sun et al., “Chemical vapour deposition,” Nature Reviews Methods Primers, vol. 1, no. 1, 2021.
[30] H Juárez et al., “Low temperature deposition: Properties of SiO2films from TEOS andozone by APCVD system,” Journal of physics. Conference series, vol. 167, pp. 012020–012020, 2009.
[31] R. Kazmi, A. Y. Kovalgin, A. A. I. Aarnink, C. Salm, and J. Schmitz, “Low-Stress Highly-Conductive In-Situ Boron Doped Ge0.7Si0.3Films by LPCVD,” ECS journal of solid state science and technology, vol. 1, no. 5, pp. P222–P226, 2012.
[32] T. Suntola and J. Antson, “Method for producing compound thin films,” 1977.
[33] R. W. Johnson, A. Hultqvist, and S. F. Bent, “A brief review of atomic layer deposition: from fundamentals to applications,” Materials Today, vol. 17, no. 5, pp. 236–246, 2014.
[34] D. Raabe, “23 - Recovery and Recrystallization: Phenomena, Physics, Models, Simulation,” ScienceDirect, 2014.
[35] M. Bogner, Günther Benstetter, and Yong Qing Fu, “RETRACTED: Cross- and in-plane thermal conductivity of AlN thin films measured using differential 3-omega method,” Surface & coatings technology/Surface and coatings technology, vol. 320, pp. 91–96, Jun. 2017
[36] A. Muscio, P. G. Bison, S. Marinetti, and E. Grinzato, “Thermal diffusivity measurement in slabs using harmonic and one-dimensional propagation of thermal waves,” International Journal of Thermal Sciences, vol. 43, no. 5, pp. 453–463, 2004.
[37] I. Hatta, “Thermal diffusivity measurements of thin films and multilayered composites,” International Journal of Thermophysics, vol. 11, no. 2, pp. 293–303, 1990.
[38] S. N. S. Mohamad et al., “Synthesis of alumina nanoparticles by sol-gel method and their applications in the removal of copper ions (Cu2+) from the solution,” IOP Conference Series: Materials Science and Engineering, vol. 701, p. 012034, 2019.
[39] C. S. Gorham, J. T. Gaskins, G. N. Parsons, M. D. Losego, and P. E. Hopkins, “Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al2O3),” Applied physics letters, vol. 104, no.25, 2014.
[40] 張祐銓, “溫度波分析法應用於二氧化矽薄膜熱傳導係數量測之實驗與數值研究,”成功大學機械工程學系學位論文, pp. 1-93, 2020.
校內:2029-07-30公開