簡易檢索 / 詳目顯示

研究生: 楊智皓
Yang, Zhi-Hao
論文名稱: 多端饋入式混合高壓直流傳輸系統連接離岸式風場之穩定度分析
Stability Analysis of Multi-infeed Hybrid HVDC Transmission Systems Connected with Offshore Wind Farms
指導教授: 王醴
WANG, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 170
中文關鍵詞: 雙饋式感應發電機線換相轉換器高壓直流傳輸系統電壓源轉換器高壓直流傳輸系統靜態同步補償器連接傳輸線穩定度
外文關鍵詞: Doubly-fed induction generator, high-voltage direct-current transmission system, line-commutated converter, voltage-source converter, tie-line, stability
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了以雙饋式感應發電機為基礎之兩個聚集等效離岸式風場,分別經由線換向轉換器高壓直流傳輸系統與電壓源轉換器高壓直流傳輸系統連接至兩個電網端,兩高壓直流傳輸系統之輸出交流側經由連接傳輸線做連接,形成多端饋入式混合高壓直流傳輸系統之架構。本論文提出於線換向轉換器高壓直流傳輸系統之整流站加入靜態同步補償器與其設計的比例-積分-微分阻尼控制器,以比較其對系統穩定度之改善特性。
    在穩態特性方面,本論文分析了不同風速以及連接傳輸線長度變動對系統特性之影響,在動態模擬方面完成了風速變動之模擬,在暫態部分則完成電網端電壓三相短路故障模擬結果。由模擬結果分析得知,連接傳輸線長度變動會影響系統之穩定度,而系統加入靜態同步補償器與其比例-積分-微分阻尼控制器後,對所研究系統在風速變動及其他干擾下之穩定度可獲得有效的改善。

    This thesis presents two equivalent aggregated offshore wind farms (OWFs) based on doubly-fed induction generator (DFIG). They connect to two power grids through a high-voltage direct-current transmission system based on line-commutated converter (LCC-HVDC) and an HVDC system based on voltage-source converter (VSC-HVDC), respectively. Two systems constitute multi-infeed hybrid HVDC transmission systems by connecting a tie-line between the AC-side outputs of the two HVDC systems. Comparative stability improvements of the studied system with and without a static synchronous compensator (STATCOM) joined with the designed proportional-integral-derivative (PID) damping controller are also performed.

    Steady-state characteristics of the studied system under different values of wind speed and length of the tie-line are examined. Dynamic and transient simulations of the studied system subject to a wind-speed disturbance and a three-phase fault at the power grid are also carried out. It can be concluded from the simulation results that length of the tie-line can affect the system stability. Moreover, the STATCOM joined with the designed PID damping controller are capable of improving the performance of the studied system under variable wind speeds and other disturbance conditions.

    摘要 I Extended Abstract II 致謝 VIII 目錄 IX 表目錄 XIV 圖目錄 XVII 符號說明 XIX 第一章 緒論 1 1-1 研究背景與研究動機 1 1-2 相關文獻回顧 3 1-3 本論文之貢獻 8 1-4 研究內容概述 9 第二章 系統數學模型 11 2-1 前言 11 2-2 研究系統架構 12 2-3 風速之數學模型 14 2-4 風力渦輪機之數學模型 17 2-5 旋角控制器之數學模型 19 2-6 風力渦輪機與發電機間轉矩之數學模型 20 2-7 雙饋式感應發電機之數學模型 22 2-8 雙饋式感應發電機之電力電子轉換器數學模型 24 2-8-1 雙饋式感應發電機轉子側轉換器 24 2-8-2 雙饋式感應發電機電網側轉換器 26 2-9 高壓直流傳輸系統之數學模型 28 2-9-1線換向轉換器高壓直流傳輸系統(LCC-HVDC) 28 2-9-2電壓源轉換器高壓直流傳輸系統(VSC-HVDC) 32 2-10 靜態同步補償器之數學模型 37 2-11 系統間傳輸線之模型 41 第三章 利用極點安置法設計阻尼控制器 42 3-1 前言 42 3-2 高壓直流傳輸系統之控制系統模型 42 3-2-1 線換向轉換器高壓直流傳輸系統之控制系統模型 43 3-2-2 電壓源轉換器高壓直流傳輸系統之控制系統模型 44 3-3 極點安置法設計比例-積分-微分阻尼控制器 46 3-3-1 線換向轉換器高壓直流傳輸系統整流器側加入比例-積分-微分阻尼控制器 48 3-3-2 電壓源轉換器高壓直流傳輸系統整流器側加入比例-積分-微分阻尼控制器 51 3-4 靈敏度分析 54 3-4-1 線換向轉換器高壓直流傳輸系統整流器側加入比例-積分-微分阻尼控制器之靈敏度分析 56 3-4-2 電壓源轉換器高壓直流傳輸系統整流器側加入比例-積分-微分阻尼控制器之靈敏度分析 59 第四章 多端饋入式混合高壓直流傳輸系統之穩態分析 62 4-1 前言 62 4-2 風速變動之穩態分析 62 4-2-1 風速改變時系統之穩態工作點分析 63 4-2-2 第一個以雙饋式感應發電機為基礎之風場風速改變時系統之特徵值分析 69 4-2-3 第二個以雙饋式感應發電機為基礎之風場風速改變時系統之特徵值分析 78 4-3 連接傳輸線長度改變時之穩態分析 87 4-3-1 連接傳輸線長度改變時系統之穩態工作點分析 87 4-3-2 傳輸線長度改變時系統之特徵值分析 95 4-3-3 傳輸線長度改變時系統之參與因子分析 102 4-4 連接傳輸線改變時之靈敏度分析 105 4-4-1 連接傳輸線為零阻抗、純電阻、純電感以及純電容時之靈敏度分析 107 4-4-2 連接傳輸線為電阻、電感和電容混合之靈敏度分析 112 第五章 多端饋入式混合高壓直流傳輸系統之動態與暫態分析 116 5-1 前言 116 5-2 風場發生風速變動時之動態分析 116 5-2-1 風場發生風速變動時比較比較含及不含靜態同步補償器之動態分析 117 5-2-2 風場發生風速變動時比較不同連接傳輸線長度之動態分析 122 5-2-3 風場發生風速變動時比較加入不同的比例-積分-微分阻尼控制器之動態分析 130 5-3 系統發生三相短路故障時之暫態分析 136 5-3-1 系統發生三相短路故障時比較是否加入靜態同步補償器之暫態分析 136 5-3-2 系統發生三相短路故障時,不同連接傳輸線長度之暫態析 141 5-3-3 系統發生三相短路故障時,加入不同的比例-積分-微分阻尼控制器之暫態比較 150 第六章 結論與未來研究方向 156 6-1 結論 156 6-2 未來研究方向 157 參考文獻 159 附錄 168 作者簡介 169

    [1] 行政院環保署。http://www.epa.gov.tw/, retrieve date: May 20, 2014.
    [2] 台灣電力公司,風力發電第四期計畫可行性研究報告,台灣電力公司,2011年6月。
    [3] 百度文庫。http://wenku.baidu.com/, retrieve date: May 18, 2014.
    [4] ABB公司。http://www.abb.com/, retrieve date: June 2, 2014。
    [5] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [6] 呂威賢,從風車到風力機,科學發展月刊,第383期,2004年11月。
    [7] Y. Liu and Z. Chen, “A flexible power control method of VSC-HVDC link for the enhancement of effective short-circuit ratio in a hybrid multi-infeed HVDC system,” IEEE Trans. Power Systems, vol. 28, no. 2, pp. 1568-1581, May 2013.
    [8] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system,” in Proc. IEEE Power Tech conference, Bologna, Italy, Jun. 23-26, 2003.
    [9] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, pp. 3791-3795, Dec. 1983.
    [10] C. Chompoo-inwai, W.-J. Lee, P. Fuangfoo, M. Williams, and J. R. Liao, “System impact study for the interconnection of wind generation and utility system,” IEEE Trans. Industry Applications, vo1. 41, no. 1, pp. 163-168, Feb. 2005.
    [11] J. Morren and S. Haan, “Short-circuit current of wind turbines with doubly-fed induction generator,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 174-180, Mar. 2007.
    [12] M. Kayikci and J. V. Milanović, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389-396, Jun. 2007.
    [13] F. Wu, X. P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
    [14] A. O. Ibrahim, T. H. Nguyen, D. -C. Lee, and S. -C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.
    [15] Y. Iwata, S. Tanaka, K. Sakamoto, H. Konishi, and H. Kawazoe, “Simulation study of a hybrid HVDC system composed of a self-commutated converter and a line-commutated converter,” in Proc. 6th International Conference on AC and DC Power Transmission, London, UK, Apr. 29-May 3, 1996, pp. 381-386.
    [16] B. R. Andersen and X. Lie, “Hybrid HVDC system for power transmission to island networks,” IEEE Trans. Power Delivery, vol. 19, no. 4, pp. 1884-1890, Oct. 2004.
    [17] K. R. Padiyar and N. Prabhu, “Modelling control design and analysis of VSC based HVDC transmission systems,” in Proc. IEEE Power System Technology International Conference, Marina Bay, Singapore, Nov. 21-24, 2004, pp. 774-779.
    [18] P. Bresesti, W. L. Kling, R. L. Hendriks, and R. Vailati, “HVDC connection of offshore wind farms to the transmission system,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 37-43, Mar. 2007.
    [19] P. Fischer, Modeling and Control of A Line-Commutated HVDC Transmission System Interacting with A VSC STATCOM, Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2007.
    [20] R. Li, S. Bozhko, and G. Asher, “Frequency control design for offshore wind farm grid with LCC-HVDC link connection,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1085-1092, May 2008.
    [21] C. Du, E. Agneholm, and G. Olsson, “VSC-HVDC system for industrial plants with onsite generators,” IEEE Trans. Power Delivery, vol. 24, no. 3, pp. 1359-1366, Jul. 2009.
    [22] C. Feltes, H. Wrede, F. W. Koch, and I. Erlich, “Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission,” IEEE Trans. Power Systems, vol. 24, no. 3, pp. 1537-1546, Aug. 2009.
    [23] S. M. Muyeen, R. Takahashi, and J. Tamura, “Operation and control of HVDC-connected offshore wind farm,” IEEE Trans. Sustainable Energy, vol. 1, no. 1, pp. 30-37, Apr. 2010.
    [24] M. E. Montilla-DJesus, D. Santos-Martin, S. Arnaltes, and E. D. Castronuovo, “Optimal operation of offshore wind farms with line-commutated HVDC link connection,” IEEE Trans. Power Systems, vol. 25, no. 2, pp. 504-513, Jun. 2010.
    [25] O. Kotb and V. K. Sood, “A hybrid HVDC transmission system supplying a passive load,” in Proc. 2010 IEEE Electric Power and Energy Conference (EPEC 2010), Halifax, Nova Scotia, Canada, Aug. 25-27, 2010, pp. 1-5.
    [26] H. Zhou, G. Yang, and J. Wang, “Modeling, analysis, and control for the rectifier of hybrid HVDC systems for DFIG-based wind farms,” IEEE Trans. Energy Conversion, vol. 26, no. 1, pp. 340-353, Mar. 2011.
    [27] L. Xu and L. Yao, “DC voltage control and power dispatch of a multi-terminal HVDC system for integrating large offshore wind farms,” IET Renewable Power Generation, vol. 5, no. 3, pp. 223-233, Oct. 2011.
    [28] R. E. T. Olguin, M. Molinas, and T. Undeland, “Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission,” IEEE Trans. Sustainable Energy, vol. 3, no. 4, pp. 899-907, Oct. 2012.
    [29] M. Durrant, H. Werner, and K. Abbott, “Model of a VSC HVDC terminal attached to a weak ac system,” in Proc. 2003 IEEE Conference on Control Applications (CCA 2003), Istanbul, Turkey, Jun. 23-25, 2003.
    [30] L. Wang and M. S.-Nguyen Thi, “Stability analysis of four PMSG-based offshore wind farms fed to an SG-based power system through an LCC-HVDC link,” IEEE Trans. Industrial Electronics, vol. 60, no. 6, pp. 2392-2400, Jun. 2013.
    [31] Y. Yang, M. Kazerani, and V. H. Quintana, “Current-source converter based STATCOM Modeling and control,” IEEE Trans. Power Delivery, vol. 20, no. 2, pp. 795-800, Apr. 2005.
    [32] A. Jain, K. Joshi, A. Behal, and N. Mohan, “Voltage regulation with STATCOMs Modeling, control and results,” IEEE Trans. Power Delivery, vol. 21, no. 2, pp. 726-735, Apr. 2006.
    [33] H. Gaztanaga, I. E.-Otadui, D. Ocnasu, and S. Bacha, “Real-time analysis of the transient response improvement of fixed-speed wind farms by using a reduced-scale STATCOM prototype,” IEEE Trans. Power Systems, vol. 22, no. 2, pp. 658-666, May 2007.
    [34] H. Chong, A. Q. Huang, M. E. Baran, S. Bhattacharya, W. Litzenberger, L. Anderson, A. L. Johnson, and A.-A. Edris, “STATCOM impact study on the integration of a large wind farm into a weak loop power system,” IEEE Trans. Energy Conversion, vol. 23, no. 1, pp. 226-233, Mar. 2008.
    [35] A. Jaén, E. Acha, and A. G. Expósito, “Voltage source converter modeling for power system state estimation: STATCOM and VSC-HVDC,” IEEE Trans. Power Systems, vol. 23, no. 4, pp. 1552-1559, Nov. 2008.
    [36] J. Reeve and S. P. Lane-Smith, “Multi-infeed HVDC transient response and recovery strategies,” IEEE Trans. Power Delivery, vol. 8, no. 4, pp. 1995-2001, Oct. 1993.
    [37] Y. Q. Xia, A. K. David, and K.-K. Li, “High-resistance faults on a multi-terminal line: Analysis, simulated studies and an adaptive distance relaying scheme,” IEEE Trans. Power Delivery, vol. 9, no. 1, pp. 492-500, Jan. 1994.
    [38] L. A. S. Pilotto, M. Szechtman, A. Wey, W. F. Long, and S. L. Nilsson, “Synchronizing and damping torque modulation controllers for multi-infeed HVDC systems,” IEEE Trans. Power Delivery, vol. 10, no. 3, pp. 1505-1513, Jul. 1995.
    [39] L. Denis and G. Andersson, “Voltage stability analysis of multi-infeed HVDC systems,” IEEE Trans. Power Delivery, vol. 12, no. 3, pp. 1309-1318, Jul. 1997.
    [40] L. Denis and G. Andersson, “Use of participation factors in modal voltage stability analysis of multi-infeed HVDC systems,” IEEE Trans. Power Delivery, vol. 13, no. 1, pp. 203-211, Jan. 1998.
    [41] L. Denis and G. Andersson, “Power stability analysis of multi-infeed HVDC systems,” IEEE Trans. Power Delivery, vol. 13, no. 3, pp. 923-931, Jul. 1998.
    [42] W.-D. Yang, Z. Xu, and Z.-X. Han, “Co-ordinated hierarchical control strategy for multi-infeed HVDC systems,” IEE Proc. Generation, Transmission, and Distribution, vol. 149, no. 2, pp. 242-248, Mar. 2002.
    [43] C. Karawita and U. D. Annakkage, “Multi-infeed HVDC interaction studies using small-signal stability assessment,” IEEE Trans. Power Delivery, vol. 24, no. 2, pp. 910-918, Apr. 2009.
    [44] E. Rahimi, A. M. Gole, J. B. Davies, I. T. Fernando, and K. L. Kent, “Commutation failure analysis in multi-infeed HVDC systems,” IEEE Trans. Power Delivery, vol. 26, no. 1, pp. 378-384, Jan. 2011.
    [45] C.-L. Liu, B.-M. Zhang, Y.-H. Hou, F.-F. Wu, and Y.-S. Liu, “An improved approach for AC-DC power flow calculation with multi-infeed DC systems,” IEEE Trans. Power Systems, vol. 26, no. 2, pp. 862-869, May 2011.
    [46] X.-Y. Chen, A. M. Gole, and M.-X. Han, “Analysis of mixed inverter/rectifier multi-infeed HVDC systems,” IEEE Trans. Power Delivery, vol. 27, no. 3, pp. 1565-1573, Jul. 2012.
    [47] H.-Y. Huang, Z. Xu, and X. Lin, “Improving performance of multi-infeed HVDC systems using grid dynamic segmentation technique based on fault current limiters,” IEEE Trans. Power Systems, vol. 27, no. 3, pp. 1664-1672, Aug. 2012.
    [48] L. Denis and G. Andersson, “Analysis of voltage and power interactions in multi-infeed HVDC systems,” IEEE Trans. Power Delivery, vol. 28, no. 2, pp. 816-824, Apr. 2013.
    [49] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [50] 王國華,風力感應發電機經高壓直流傳輸線併聯市電之研究,國立成功大學電機工程學系碩士論文,2007年7月。
    [51] 黃怡瑄,混合離岸式風場連接高壓直流傳輸系統之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,2011年7月。
    [52] 林俊佑,採用高壓直流輸電系統於混合再生能源發電系統之穩定度改善與功率潮流控制,國立成功大學電機工程學系碩士論文,2011年7月。
    [53] 謝旻翰,利用超導儲能系統及高壓直流輸電系統於混合超導同步發電機與雙饋式感應發電機之風力發電系統之穩定度改善,國立成功大學電機工程學系碩士論文,2013年6月。
    [54] 阮名莎,採用高壓直流輸電系統以增強含有再生能源系統之電力系統穩定度,國立成功大學電機工程學系博士論文,2013年6月。

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE