簡易檢索 / 詳目顯示

研究生: 林政立
Lin, Cheng-Li
論文名稱: 肱骨大轉子骨折:以生物力學觀點探討手術骨折固定的強度及策略
Humeral Greater Tuberosity Fracture: Biomechanical Perspectives in Fixation Strength and Surgical Strategies
指導教授: 蘇芳慶
Su, Fong-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 61
中文關鍵詞: 肱骨粗隆骨折手術生物力學接觸壓力縫合錨釘螺絲肩關節外展
外文關鍵詞: Humeral greater tuberosity fracture, surgery, biomechanics, contact pressure, suture anchor, screw, shoulder abduction
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近端肱骨骨折相當常見,但是對於其中肱骨粗隆骨折的了解較少。肱骨粗隆骨折手術治療時若能有牢靠的固定,對於術後的骨折癒合及後續的復健療程會有很大的幫助,可以加快病人的復原速度。縫合錨釘(suture anchor)及螺絲(screw)已經被廣泛運用在肱骨粗隆骨折的固定,但對於此兩種固定材料在不同固定結構之生物力學研究仍然十分缺乏,為了更加了解肱骨粗隆骨折不同手術固定方式的優缺點,探討相關固定結構的生物力學強度表現,是瞭解及增加手術治療成功重要的一環。
    本研究共分成三個部份,本研究的第一部份為利用肩關節大體模型,分析利用縫合錨釘(suture anchor)或螺絲(screw)來固定肱骨粗隆骨折時,常使用的三種不同固定結構 Double-Row Suture Anchor Fixation (DR); Suture-Bridge Technique using suture anchors and knotless suture anchors (SB); Two-Screw Fixation (TS) 的生物力學強度,研究結果顯示使用縫合錨釘的固定方式(DR及SB)不管在產生3或5毫米位移的力量以及肱骨骨折的最終破壞載荷的力學表現都較使用螺絲的固定方式(TS)為佳。本研究的第二部份將利用豬的肩關節模型,使用與前述相同縫合錨釘或螺絲的三種不同固定技術,探討在不同的肩關節外展角度下,對於肱骨粗隆骨折固定強度是否產生影響。我們發現DR組在肩關節低外展角度時具有最大的初始固定強度,而SB組在高外展角度具有最好的初始固定強度, TS組的力學強度則不受外展角影響。
    基於前述的研究結果,我們發現肱骨粗隆骨折使用縫合錨釘的固定方式,在生物力學強度上較使用螺絲的固定方式更好。但使用縫合錨釘結構的骨折界面接觸性質目前尚未被闡明,因此本研究的第三部份將利用介面壓力感測裝置,分析及比較常用的兩種縫合錨釘雙排固定結構(DR和SB)在骨折介面的壓力情況。結果顯示,儘管SB結構在固定後一開始具有較佳的界面接觸壓力,但在給予骨折塊施加100N拉力後,DR構造在各個外展角度下都有更好的接觸壓力表現。本研究之成果讓我們清楚瞭解肱骨粗隆骨折在不同手術固定方式下的生物力學強度,讓我們對於利用縫合錨釘及螺絲來固定肱骨粗隆骨折時,在不同的固定結構及不同的肩關節外展角度下,對於強度和介面壓力的影響有更進一步的認知,也幫助骨科醫師未來在治療肱骨粗隆骨折時,有更多參考的資訊及相關的實證醫學資料。

    Despite the common occurrence of the proximal humeral fracture, the subgroup of isolated greater tuberosity fracture remains less understood. Firm fixation of the greater tuberosity fragment to the humerus is an important factor in initial fracture healing and allows for subsequent rehabilitation. Suture anchors and screws are commonly used in either arthroscopic or open surgeries for the fixation of the greater tuberosity fracture, but no biomechanical studies have been performed to compare the strength of fixation constructs using these two implants. The understanding of the fixation strength and surgical strategies based on biomechanical perspectives is indispensable.
    Therefore, there are three scopes in this study. The first purpose is to analyze the strength of three different fixation constructs, using suture anchors or screws, for the management of greater tuberosity fractures in a human cadaveric model. The three configurations are Double-Row Suture Anchor Fixation (DR); Suture-Bridge Technique using suture anchors and knotless suture anchors (SB); and Two-Screw Fixation (TS). The results suggested that the suture anchor constructs would be stronger than the fixation construct using screws in the forces that create 3- and 5-mm displacements and the ultimate failure load for the humeral greater tuberosity fracture.
    The second purpose is to investigate the effects of shoulder abduction on the fixation of a humeral greater tuberosity fracture among three common configurations using suture anchors or screws in a porcine model. The three fixation techniques as described above were used for the biomechanical comparison. We found that the DR group had greatest initial fixation strength at a low abduction angle, whereas the SB group had the highest initial fixation strength at a high abduction angle. The TS group appeared unaffected by the abduction angle.
    Based on our previous results, suture anchor-based fixation has better results in biomechanical strength than screw-based construct for the management of greater tuberosity fracture. We compare the contact characteristics of two double-row suture anchor fixations (DR and SB) since the interface contact properties of these fixation constructs have not been elucidated. Findings suggest that despite the SB construct having superior interface contact pressure initially after fixation, the DR construct provided better contact performance at all abduction angles with the applied force (100N). The results help us understand the biomechanical properties of different fixation constructs for greater tuberosity fractures as well as whether the shoulder abduction position affects the biomechanical strength of the fixation constructs. This study may provide useful information for assisting the orthopedic surgeons to make the decisions regarding the optimal treatment for patients with humeral greater tuberosity fractures.

    Contents 中文摘要 I Abstract III 誌謝 V List of Tables X List of Figures XI Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Anatomy of Shoulder Joint 2 1.3 Greater Tuberosity Fractures of the Humerus 5 1.4 Biomechanical Research in Greater Tuberosity Fracture 6 1.5 Motivation and Specific Aims 9 1.5.1 Suture Anchor versus Screw Fixation for Greater Tuberosity Fractures of the Humerus 9 1.5.2 Effect of Shoulder Abduction on the Fixation of Humeral Greater Tuberosity Fractures 10 1.5.3 The Contact Characteristics of Fixation Techniques in Humeral Greater Tuberosity Fracture with Double-Row Suture Anchor Constructs 11 Chapter 2 Materials and Methods 12 2.1 Experimental Apparatuses 12 2.1.1 Universal Material Testing Machine 12 2.1.2 Load-Displacement Measurement System 13 2.1.3 Contact Pressure and Area Measurement System 14 2.2 Experimental Specimens 16 2.2.1 Human Cadaveric Shoulders (Study 1) 16 2.2.2 Porcine Shoulders (Study 2) 16 2.2.3 Human Cadaveric Shoulders (Study 3) 17 2.3 Preparation of specimens 18 2.3.1 Greater Tuberosity Fracture Model 18 2.3.2 Three Fixation Configurations 18 2.4 Biomechanical Testing 22 2.4.1 Suture Anchor versus Screw Fixation for Greater Tuberosity Fractures of the Humerus 22 2.4.2 Effect of Shoulder Abduction on the Fixation of Humeral Greater Tuberosity Fractures 23 2.4.3 The Contact Characteristics of Arthroscopic Fixation Techniques in Humeral Greater Tuberosity Fracture with Double-Row Suture Anchor Constructs 26 2.5 Statistical Analysis 27 2.5.1 Suture Anchor versus Screw Fixation for Greater Tuberosity Fractures of the Humerus 27 2.5.2 Effect of Shoulder Abduction on the Fixation of Humeral Greater Tuberosity Fractures 27 2.5.3 The Contact Characteristics of Arthroscopic Fixation Techniques in Humeral Greater Tuberosity Fracture with Double-Row Suture Anchor Constructs 28 Chapter 3 Results 29 3.1 Suture Anchor versus Screw Fixation for Greater Tuberosity Fractures of the Humerus 29 3.1.1 Displacement of 3 and 5 mm 29 3.1.2 Load to Failure 31 3.1.3 Mode of Failure 31 3.2 Effect of Shoulder Abduction on the Fixation of Humeral Greater Tuberosity Fractures 32 3.2.1 Forces for 3mm and 5mm Displacements 33 3.2.2 Load to Failure 35 3.2.3 Mode of Failure 35 3.3 The Contact Characteristics of Arthroscopic Fixation Techniques in Humeral Greater Tuberosity Fracture with Double-Row Suture Anchor Constructs 36 3.3.1 Initial Fixation Properties and Changes Over Time 36 3.3.2 Contact Pressure and Contact Area in Response to Applied Load 38 Under Different Abduction Angles 38 Chapter 4 Discussion 43 4.1 Suture Anchor versus Screw Fixation for Greater Tuberosity Fractures of the Humerus 43 4.2 Effect of Shoulder Abduction on the Fixation of Humeral Greater Tuberosity Fractures 46 4.3 The Contact Characteristics of Arthroscopic Fixation Techniques in Humeral Greater Tuberosity Fracture with Double-Row Suture Anchor Constructs 50 Chapter 5 Summary and Future Work 53 5.1 Summary 53 5.2 Future Work 54 References 56

    Andres BM, Lam PH, Murrell GA (2010). Tension, abduction, and surgical technique affect footprint compression after rotator cuff repair in an ovine model. J Shoulder Elbow Surg 19:1018-27.
    Amroodi MN, Behshad V, Motaghi P (2016). Long-term Results, Functional Outcomes and Complications after Open Reduction and Internal Fixation of Neglected and Displaced Greater Tuberosity of Humerus Fractures. Arch Bone Jt Surg. 4(4):330-336.
    Barvencik F, Gebauer M, Beil FT, Vettorazzi E, Mumme M, Rupprecht M et al (2010). Age- and sex-related changes of humeral head microarchitecture: histomorphometric analysis of 60 human specimens. J Orthop Res 2010;28:18-26.
    Bey MJ, Song HK, Wehrli FW, Soslowsky LJ (2002). Intratendinous strain fields of the intact supraspinatus tendon: the effect of glenohumeral joint position and tendon region. J Orthop Res 2002;20:869-74.
    Bhatia DN, van Rooyen KS, du Toit DF, de Beer JF (2006). Surgical treatment of comminuted, displaced fractures of the greater tuberosity of the proximal humerus: a new technique of double-row suture-anchor fixation and long-term results. Injury 37:946-952.
    Bisson LJ, Manohar LM (2010). A biomechanical comparison of the pullout strength of No. 2 264 FiberWire suture and 2-mm FiberWire tape in bovine rotator cuff tendons. Arthroscopy 26:1463-8.
    Bono CM, Renard R, Levine RG, Levy AS (2001). Effect of displacement of fractures of the greater tuberosity on the mechanics of the shoulder. J Bone Joint Surg Br 83:1056-1062.
    Bonsell S, Buford DA Jr (2003). Arthroscopic reduction and internal fixation of a greater tuberosity fracture of the shoulder: a case report. J Shoulder Elbow Surg 12:397–400.
    Braunstein V, Wiedemann E, Plitz W, Muensterer OJ, Mutschler W, Hinterwimmer S (2007). Operative treatment of greater tuberosity fractures of the humerus--a biomechanical analysis. Clin Biomech 22:652-7.
    Brais G, Menard J, Mutch J, Laflamme GY, Petit Y, Rouleau DM. Transosseous braided-tape and double-row fixations are better than tension band for avulsion-type greater tuberosity fractures (2015). Injury. 46:1007-1012.
    Brink PR, Windolf M, de Boer P, Brianza S, Braunstein V, Schwieger K (2013). Tension band wiring of the olecranon: is it really a dynamic principle of osteosynthesis? Injury. 44:518-522.
    Bucholz RW, Heckman JD, Court-Brown CM, and Tornetta P (2009). Rockwood and Green's Fractures in Adults. 7nd edn. Lippincott William & Wilkins.
    Burkhart SS (2000). A stepwise approach to arthroscopic rotator cuff repair based on biomechanical principles. Arthroscopy 16:82-90.
    Cadet ER, Ahmad CS (2007). Arthroscopic reduction and suture anchor fixation for a displaced greater tuberosity fracture: a case report. J Shoulder Elbow Surg 16:e6-e9.
    Carrera EF, Matsumoto MH, Netto NA, Faloppa F (2004). Fixation of greater tuberosity fractures. Arthroscopy 20:e109–e111.
    DeBottis D, Anavian J, Green A (2014). Surgical management of isolated greater tuberosity fractures of the proximal humerus. Orthop Clin North Am. 45:207-218.
    Escamilla RF, Yamashiro K, Paulos L, Andrews JR (2009). Shoulder muscle activity and function in common shoulder rehabilitation exercises. Sports Med 39:663-85.
    Flatow EL, Cuomo F, Maday MG, Miller SR, McIlveen SJ, Bigliani LU (1991). Open reduction and internal fixation of two-part displaced fractures of the greater tuberosity of the proximal part of the humerus. J Bone Joint Surg Am 73:1213-8.
    George MS (2007). Fractures of the greater tuberosity of the Humerus. J Am Acad Orthop Surg 15:607-613.
    Green A, Izzi J, Jr. (2003). Isolated fractures of the greater tuberosity of the proximal humerus. J Shoulder Elbow Surg 12:641-649.
    Gruson KI, Ruchelsman DE, Tejwani NC (2008). Isolated tuberosity fractures of the proximal humeral: current concepts. Injury 39:284-298.
    Iannotti JP, Gabriel JP, Schneck SL, Evans BG, Misra S (1992). The normal glenohumeral relationships: An anatomical study of one hundred and forty shoulders. J Bone Joint Surg Am 74:491-500.
    Ishak C, Sahajpal D, Chiang A, Atallah W, Kummer F, Jazrawi LM (2006). Fixation of greater tuberosity fractures: a biomechanical comparison of three techniques. Bull Hosp Jt Dis. 63(3-4):98-9.
    Ji JH, Shafi M, Song IS, Kim YY, McFarland EG, Moon CY (2010). Arthroscopic fixation technique for comminuted, displaced greater tuberosity fracture. Arthroscopy 26:600-609.
    Kim KC, Rhee KJ, Shin HD, Kim YM (2008). Arthroscopic fixation for displaced greater tuberosity fracture using the suture-bridge technique. Arthroscopy 24:120 e1–120 e3.
    Kim SJ, Kim SH, Moon HS, Chun YM (2016). Footprint Contact Area and Interface Pressure Comparison Between the Knotless and Knot-Tying Transosseous-Equivalent Technique for Rotator Cuff Repair. Arthroscopy. 32:7-12.
    Liao W, Zhang H, Li Z, Li J (2016). Is Arthroscopic Technique Superior to Open Reduction Internal Fixation in the Treatment of Isolated Displaced Greater Tuberosity Fractures? Clin Orthop Relat Res. 474:1269-1279.
    Mazzocca AD, Bollier MJ, Ciminiello AM, et al (2010). Biomechanical evaluation of arthroscopic rotator cuff repairs over time. Arthroscopy. 2010;26:592-599.
    Mihata T, Fukuhara T, Jun BJ, Watanabe C, Kinoshita M (2011). Effect of shoulder abduction angle on biomechanical properties of the repaired rotator cuff tendons with 3 types of double-row technique. Am J Sports Med 39:551-6.
    Minagawa H, Itoi E, Konno N, Kido T, Sano A, Urayama M, Sato K (1998). Humeral attachment of the supraspinatus and infraspinatus tendons: An anatomic study. Arthroscopy 14: 302-306.
    Moore KL, Dalley AF, II (1999). Clinically Oriented Anatomy. 4th edn. Lippincott William & Wilkins.
    Morag Y, Jacobson JA, Miller B, De Maeseneer M, Girish G, Jamadar D (2006). MR imaging of rotator cuff injury: what the clinician needs to know. Radiographics 26 (4): 1045-1065.
    Neer CS (1970). Displaced proximal humeral fractures. Classification and evaluation. J Bone Jt Surg 52:1077-1089.
    Ostrander RV, 3rd, McKinney BI. Evaluation of footprint contact area and pressure using a triple-row modification of the suture-bridge technique for rotator cuff repair (2012). J Shoulder Elbow Surg. 21:1406-1412.
    Park MC, Elattrache NS, Ahmad CS, Tibone JE (2006). "Transosseous-equivalent" rotator cuff repair technique. Arthroscopy 22:1360 e1-5.
    Park MC, ElAttrache NS, Tibone JE, Ahmad CS, Jun BJ, Lee TQ (2007). Part I: Footprint contact characteristics for a transosseous-equivalent rotator cuff repair technique compared with a double-row repair technique. J Shoulder Elbow Surg 16:461-8.
    Park MC, Tibone JE, ElAttrache NS, Ahmad CS, Jun BJ, Lee TQ (2007). Part II: Biomechanical assessment for a footprint-restoring transosseous-equivalent rotator cuff repair technique compared with a double-row repair technique. J Shoulder Elbow Surg 16:469-76.
    Park MC, Pirolo JM, Park CJ, Tibone JE, McGarry MH, Lee TQ (2009). The effect of abduction and rotation on footprint contact for single-row, double-row, and modified double-row rorotator cuff repair techniques. Am J Sports Med. 37:1599-1608.
    Park TS, Choi IY, Kim YH, Park MR, Shon JH, Kim SI (1997). A new suggestion for the treatment of minimally displaced fractures of the greater tuberosity of the proximal humerus. Bull Hosp Jt Dis 56:171-176.
    Rouleau DM, Mutch J, Laflamme GY (2016). Surgical Treatment of Displaced Greater Tuberosity Fractures of the Humerus. J Am Acad Orthop Surg. 24:46-56.
    Schell H, Epari DR, Kassi JP, Bragulla H, Bail HJ, Duda GN (2005). The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res. 23:1022-1028.
    Sharkey NA, Marder RA, Hanson PB (1994). The entire rotator cuff contributes to elevation of the arm. J Orthop Res 12:699-708.
    Song HS, Williams GR Jr (2008). Arthroscopic reduction and fixation with suture-bridge technique for displaced or comminuted greater tuberosity fractures. Arthroscopy 24:956-960.
    Stubbs SN, Hunter RE (2004). Complete, superior labral radial tear and type II slap tear associated with greater tuberosity fracture. Arthroscopy 20 (Suppl 2): 70-72.
    Sumrein BO, Huttunen TT, Launonen AP, Berg HE, Felländer-Tsai L, Mattila VM (2016). Proximal humeral fractures in Sweden-a registry-based study. Osteoporos Int. Oct 27. [Epub ahead of print] PMID: 27787593
    Tingart MJ, Lehtinen J, Zurakowski D, Warner JJ, Apreleva M (2006). Proximal humeral fractures: regional differences in bone mineral density of the humeral head affect the fixation strength of cancellous screws. J Shoulder Elbow Surg 15:620-4.
    Tuoheti Y, Itoi E, Yamamoto N, et al (2005). Contact area, contact pressure, and pressure patterns of the tendon-bone interface after rotator cuff repair. Am J Sports Med. 33:1869-1874.

    無法下載圖示 校內:2022-06-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE