| 研究生: |
雷大德 Melo, Dante Fernando Recalde |
|---|---|
| 論文名稱: |
結合離岸風電與氫能管理系統之電網操作架構 Combination of Offshore Wind Generation with Hydrogen Management System for Grid Operation Scheme |
| 指導教授: |
張簡樂仁
Chang-Chien, Le-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 188 |
| 中文關鍵詞: | 離岸風電 、超級電容 、氫能管理系統 |
| 外文關鍵詞: | Offshore wind generator, supercapacitor, hydrogen storage |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
風力發電佔電力系統的比率逐漸提高,然而其來源變動性與不可預測的特性使系統併聯產生不利的影響。因此,必須輔以新的控制策略,來減少這些影響並確保電力系統保持穩定的運轉。
於再生能源的管理系統中,儲能系統扮演了關鍵的角色。當無法滿足電力需求時,儲能系統將多餘的電能作釋放或儲存。而在現今的儲能設備中,氫能具有能量密度高、用途廣泛、幾無汙染等優點;超級電容則具備轉換效率高與響應速度快等特色。
本研究結合離岸風力發電和氫能管理系統架構來調節饋入電網的輸出功率。本文提出一個控制策略使氫能管理系統能提供或吸收電網操作指令與風能實際輸出中的差值。整個控制架構係實現氫能管理系統與風場控制的出力協調,並以一序列的測試來驗證所提出架構的可行性及有效性。由測試結果顯示,在多種不同的運轉案例下,所提出的再生能源架構確能將之視為一大型傳統發電廠。
As the wind energy penetration in the power systems increase, so do the adverse impacts on the grid operation of such a variable and unpredictable resource. New control schemes need to be implemented to reduce these effects and ensure the stable operation of the power system. Storage systems emerged as a crucial component in the management of energy from the stand point of renewable sources, allowing energy to be stored or released into the grid whenever the power demand cannot be fulfilled. Among today’s energy storage developments, hydrogen based storage system features high energy density, wide application and virtually no pollution. Super-capacitors also perform fast response characteristics with high efficiency.
This thesis combines the offshore wind generation with the hydrogen management system to regulate the wind farm power output to the grid. A control scheme is devised such that the hydrogen management system delivers or absorbs the power discrepancy between the operator command and the wind farm output. The overall control scheme is realized by coordinating sub-controls on the hydrogen management system and wind farms.
A series of tests are conducted to verify the feasibility and effectiveness of the proposed control scheme. Testing results from various operating scenarios indicate that the proposed renewable resource scheme can be operated like a large-scale conventional power plant.
[1] REN21, “Renewables 2011 Global Status Report,” 2011.
[2] The World Wind Energy Association, “Half Year Report 2011,” 2011.
[3] M. D. Esteban, J. J. Diez, J. S. López, and V. Negro, “Why offshore wind energy?,” Renewable Energy, vol. 36, no. 2, pp. 444-450, Feb. 2011.
[4] C. N. Bhende, S. Mishra, and S. G. Malla, “Permanent Magnet Synchronous Generator-Based Standalone Wind Energy Supply System,” IEEE Transactions on Sustainable Energy, vol. 2, no. 4, pp. 361-373, Oct. 2011.
[5] Q. Li, S. S. Choi, Y. Yuan, and D. L. Yao, “On the Determination of Battery Energy Storage Capacity and Short-Term Power Dispatch of a Wind Farm,” IEEE Transactions on Sustainable Energy, vol. 2, no. 2, pp. 148-158, Apr. 2011.
[6] Y.-H. Kim, S.-H. Kim, C.-J. Lim, S. H. Kim, and B.-K. Kwon, “Control Strategy of Energy Storage System for Power Stability in a Wind Farm,” in 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), IEEE, 2011, pp. 2970-2973.
[7] T. K. A. Brekken, A. Yokochi, A. von Jouanne, Z. Z. Yen, H. M. Hapke, and D. A. Halamay, “Optimal Energy Storage Sizing and Control for Wind Power Applications,” IEEE Transactions on Sustainable Energy, vol. 2, no. 1, pp. 69–77, Jan. 2010.
[8] R. Dufo Lopez, J. Bernal Agustin, and J. Contreras, “Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage,” Renewable Energy, vol. 32, no. 7, pp. 1102-1126, Jun. 2007.
[9] K. Agbossou, M. Kolhe, J. Hamelin, and T. K. Bose, “Performance of a Stand- Alone Renewable Energy System Based on Energy Storage as Hydrogen,” IEEE Transactions on Energy Conversion, vol. 19, no. 3, pp. 633-640, Sep. 2004.
[10] N. Gyawali and Y. Ohsawa, “Integrating Fuel Cell/Electrolyzer/Ultracapacitor System Into a Stand-Alone Microhydro Plant,” IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 1092-1101, Dec. 2010.
[11] S. M. Muyeen, R. Takahashi, and J. Tamura, “Electrolyzer switching strategy for hydrogen generation from variable speed wind generator,” Electric Power Systems Research, vol. 81, no. 5, pp. 1171-1179, May 2011.
[12] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A Review of the State of the Art of Power Electronics for Wind Turbines,” IEEE Transactions on Power Electronics, vol. 24, no. 8, pp. 1859-1875, Aug. 2009.
[13] M. Ragheb, “Control of Wind Turbines,” 2008.
[14] E. Hau, Wind Turbines, 2nd Editio. Berlin/Heidelberg: Springer-Verlag, 2006.
[15] National Instruments, “Wind turbine control methods,” Dec. 2008.
[16] A. D. Hansen and L. H. Hansen, “Wind turbine concept market penetration over 10 years (1995–2004),” Wind energy, vol. 10, no. 1, pp. 81–97, 2007.
[17] H. Polinder, D. J. Bang, H. Li, and Z. Chen, “Concept report on generator topologies, mechanical & electromagnetic optimization,” 2007.
[18] W. E. Leithead and B. Connor, “Control of variable speed wind turbines: Design task,” International Journal of Control, vol. 73, no. 13, pp. 1189-1212, Jan. 2000.
[19] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind Energy Handbook. Chichester, UK: John Wiley & Sons, Ltd, 2001.
[20] H. Polinder, F. F. a. van der Pijl, G.-J. de Vilder, and P. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines,” IEEE International Conference on Electric Machines and Drives, 2005., pp. 543-550, 2005.
[21] W. Musial and S. Butterfield, “Future for offshore wind energy in the United States,” EnergyOcean Proceedings, June 2004, Palm Beach Florida, USA, no. June, pp. 500–36313, 2004.
[22] M. Junginger, “Cost reduction prospects for the offshore wind energy sector,” Wind Energy Conference & Exhibition, no. 0, pp. 1-12, 2003.
[23] S. M. Muyeen, R. Takahashi, and J. Tamura, “Operation and Control of HVDC- Connected Offshore Wind Farm,” IEEE Transactions on Sustainable Energy, vol. 1, no. 1, pp. 30-37, Apr. 2010.
[24] J. Conroy and R. Watson, “Aggregate modelling of wind farms containing full- converter wind turbine generators with permanent magnet synchronous machines: transient stability studies,” Renewable Power Generation, IET, vol. 3, no. 1, pp. 39–52, 2009.
[25] A. Tuzuner, “Wind speed modeling and energy production simulation with Weibull sampling,” in 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1-6.
[26] J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained. Chichester, UK: John Wiley & Sons, Ltd, 2002.
[27] A. Jha, Ph.D., Wind Turbine Technology. CRC Press, 2010, pp. 31-78.
[28] J. G. Slootweg, S. W. H. de Haan, H. Polinder, and W. L. Kling, “General model for representing variable speed wind turbines in power system dynamics simulations,” IEEE Transactions on Power Systems, vol. 18, no. 1, pp. 144-151, Feb. 2003.
[29] C.-J. Chang, “Controllable Wind Generation System Realized by Energy Storage Equipment,” National Cheng Kung University, 2010.
[30] R. Scott Semken et al., “Direct-drive permanent magnet generators for high-power wind turbines: benefits and limiting factors,” IET Renewable Power Generation, vol. 6, no. 1, p. 1, 2012.
[31] K. Tan and S. Islam, “Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensors,” Energy, vol. 19, no. 2, pp. 392-399, 2004.
[32] M. Yin, G. Li, M. Zhou, and C. Zhao, “Modeling of the Wind Turbine with a Permanent Magnet Synchronous Generator for Integration,” in 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1-6.
[33] N. P. W. Strachan and D. Jovcic, “Dynamic Modelling, Simulation and Analysis of an Offshore Variable-Speed Directly-Driven Permanent-Magnet Wind Energy Conversion and Storage System (WECSS),” in OCEANS 2007 - Europe, 2007, no. 0, pp. 1-6.
[34] A. F. Zobaa and B. Ramesh, Handbook of Renewable Energy Technology. World Scientific, 2011.
[35] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “A Variable Speed Wind Turbine Control Strategy to Meet Wind Farm Grid Code Requirements,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 331-340, Feb. 2010.
[36] A. Yazdani and R. Iravani, “A Neutral-Point Clamped Converter System for Direct- Drive Variable-Speed Wind Power Unit,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 596-607, Jun. 2006.
[37] A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Transactions on Industry Applications, vol. IA–17, no. 5, pp. 518-523, Sep. 1981.
[38] N. R. Chaudhuri and A. Yazdani, “An aggregation scheme for offshore wind farms with VSC-based HVDC collection system,” in 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 1-8.
[39] N. M. Kirby, “HVDC transmission for large offshore windfarms,” in Seventh International Conference on AC and DC Transmission, 2001, vol. 2001, no. June, pp. 162-168.
[40] A. Yazdani and R. Iravani, “Dynamic Model and Control of the NPC-Based Back- to-Back HVDC System,” IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 414-424, Jan. 2006.
[41] E. Spahic, G. Balzer, B. Hellmich, and W. Munch, “Wind Energy Storages - Possibilities,” in 2007 IEEE Lausanne Power Tech, 2007, pp. 615-620.
[42] H. Ibrahim, a Ilinca, and J. Perron, “Energy storage systems—Characteristics and comparisons,” Renewable and Sustainable Energy Reviews, vol. 12, no. 5, pp. 1221-1250, Jun. 2008.
[43] R. E. Clarke, S. Giddey, F. T. Ciacchi, S. P. S. Badwal, B. Paul, and J. Andrews, “Direct coupling of an electrolyser to a solar PV system for generating hydrogen,” International Journal of Hydrogen Energy, vol. 34, no. 6, pp. 2531-2542, Mar. 2009.
[44] O. Ulleberg, “Modeling of advanced alkaline electrolyzers: a system simulation approach,” International Journal of Hydrogen Energy, vol. 28, no. 1, pp. 21-33, Jan.
2003.
[45] P. Artuso, F. Zuccari, A. Dell’Era, and F. Orecchini, “PV-Electrolyzer Plant: Models and Optimization Procedure,” Journal of Solar Energy Engineering, vol. 132, no. 3, p. 031016, 2010.
[46] T. Zhou and B. Francois, “Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system,” International Journal of Hydrogen Energy, vol. 34, no. 1, pp. 21-30, Jan. 2009.
[47] F. J. Pino, L. Valverde, and F. Rosa, “Influence of wind turbine power curve and electrolyzer operating temperature on hydrogen production in wind–hydrogen systems,” Journal of Power Sources, vol. 196, no. 9, pp. 4418-4426, May 2011.
[48] a. Kirubakaran, S. Jain, and R. K. Nema, “A review on fuel cell technologies and power electronic interface,” Renewable and Sustainable Energy Reviews, vol. 13, no.
9, pp. 2430-2440, Dec. 2009.
[49] P. Sethakul, S. Rael, B. Davat, and P. Thounthong, “Fuel cell high-power applications,” IEEE Industrial Electronics Magazine, vol. 3, no. 1, pp. 32-46, Mar. 2009.
[50] A. T-Raissi, “Current technology of fuel cell systems,” in IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203), 1992, vol. 3, pp. 1953-1957.
[51] I. Ballard Power Systems, “Fuel Cell Distributed Generation - 1MW,” 2012. [Online]. Available: http://www.ballard.com/.
[52] K. Rajashekara, “Hybrid fuel-cell strategies for clean power generation,” Industry Applications, IEEE Transactions on, vol. 41, no. 3, pp. 682-689, 2005.
[53] J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, “An Electrochemical- Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 1103-1112, Oct. 2004.
[54] R. F. Mann, J. C. Amphlett, M. a. I. Hooper, H. M. Jensen, B. a. Peppley, and P. R. Roberge, “Development and application of a generalised steady-state electrochemical model for a PEM fuel cell,” Journal of Power Sources, vol. 86, no. 1–2, pp. 173-180, Mar. 2000.
[55] P. R. Pathapati, X. Xue, and J. Tang, “A new dynamic model for predicting transient phenomena in a PEM fuel cell system,” Renewable Energy, vol. 30, no. 1, pp. 1-22, Jan. 2005.
[56] P. T. Nguyen, T. Berning, and N. Djilali, “Computational model of a PEM fuel cell with serpentine gas flow channels,” Journal of Power Sources, vol. 130, no. 1–2, pp. 149-157, May 2004.
[57] J. Larminie and A. Dicks, “Fuel cell systems explained,” Fuel Cells Bulletin, vol. 2, no. 7, pp. 6-8, Apr. 2003.
[58] A. Züttel, “Materials for hydrogen storage,” Materials Today, vol. 6, no. 9, pp. 24-33, Sep. 2003.
[59] M. Hirscher, Handbook of Hydrogen Storage. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
[60] R. Niu and H. Yang, “Modeling and identification of electric double-layer supercapacitors,” in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 1-4.
[61] H. Gualous, D. Bouquain, a. Berthon, and J. M. Kauffmann, “Experimental study of supercapacitor serial resistance and capacitance variations with temperature,” Journal of Power Sources, vol. 123, no. 1, pp. 86-93, Sep. 2003.
[62] R. Bonert, “Characterization of Double-Layer Capacitors (DLCs) for Power Electronics Applications,” Computer Engineering, pp. 1149-1154, 1998.
[63] L. Zubieta and R. Bonert, “Characterization of double-layer capacitors for power electronics applications,” IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 199-205, 2000.
[64] I. D. Oltean, A. M. Matoi, and E. Helerea, “A supercapacitor stack - design and characteristics,” in 2010 12th InternationalConference on Optimization of Electrical and Electronic Equipment, 2010, no. 2, pp. 214-219.
[65] S. a. Sherif, F. Barbir, and T. N. Veziroglu, “Wind energy and the hydrogen economy—review of the technology,” Solar Energy, vol. 78, no. 5, pp. 647-660, May 2005.
[66] J. G. Slootweg and W. L. Kling, “Modeling of large wind farms in power system simulations,” in IEEE Power Engineering Society Summer Meeting,, 2002, vol. 1, pp. 503-508.
[67] T. H. M. El-Fouly, E. F. El-Saadany, and M. M. a. Salama, “Grey Predictor for Wind Energy Conversion Systems Output Power Prediction,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1450-1452, Aug. 2006.
[68] L. Landberg, “Short-term prediction of the power production from wind farms,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 80, no. 1–2, pp. 207-220, Mar. 1999.
校內:2018-01-01公開