| 研究生: |
朱珮菱 Chu, Pei-Ling |
|---|---|
| 論文名稱: |
以創新抵制理論及科技接受模型探討美食外送平台APP之使用意願 Applying the Theory of Innovation Resistance and Technology Acceptance Model to Explore Intention of Using the App of Food Delivery Platform |
| 指導教授: |
黃瀞瑩
Huang, Ching-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 美食外送平台 、創新抵制 、科技接受模型 |
| 外文關鍵詞: | Food Delivery Platform, Innovation Resistance, Technology Acceptance Model |
| 相關次數: | 點閱:192 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,全球美食外送市場持續成長,而台灣龐大的外食族群更是為美食
外送發展提供足夠大量的潛在客群,然而根據市場研究顧問公司凱度洞察調查16~60 歲的台灣民眾中仍有高達 60%未使用過美食外送平台 app,顯示台灣仍有很高比例的人群未曾接觸過美食外送服務,且相較於台灣民眾外食的頻率而言,高頻率的美食外送平台 app 使用者亦不如預期多。
創新抵制心理是造成某項創新採用的進程延緩甚至是失敗的一大原因。而
科技接受模型則常被用於探討科技領域的人類行為意圖。故本研究結合創新抵制理論與科技接受模型,探討以知覺易用性、知覺有用性作為中介時,創新抵制障礙對台灣民眾使用美食外送平台 app 的意願之影響。
本研究針對台灣地區曾使用過美食外送平台 app 或對其具足夠了解的受試者進行網路問卷調查,最終收集有效樣本共計 286 份。並藉由實證發現:
(1)添加知覺易用性作為中介後,原先不對使用意願產生顯著影響的價值障礙,變為負向影響使用意願,並受知覺易用性正向效果削減、
(2)添加知覺易用性或知覺有用性作為中介,都會使得原先形象障礙對於使用意願產生的負向影響有所減弱、
(3)添加知覺有用性作為中介,則會削減原先傳統信念障礙對於使用意願產
生的負向影響。
此外,本研究亦驗證不同特質及使用習慣的人,確實於不同創新抵制障礙的感知有所差異:
(1)男性於價值障礙感知高於女性、
(2)沒有實際操作過美食外送平台 app 的受試者會感知到更高的形象障礙、傳統信念障礙,而使用頻率愈低的受試者也會感知到更高的傳統信念障礙。
In recent years, the global food delivery market has continued growing. Moreover, a large number of Taiwanese like eating out. However, up to 60% of Taiwanese aged from
16 to 60 still have never used apps of food delivery platforms (FDP). Moreover, only 15% of who have using experience are heavy users. That is, Taiwanese do not use apps of FDPs as frequently as their frequency of eating out.
This study combines innovation resistance, which is the main reason of the delay of innovation adoption, and Technology Acceptance Model(TAM), which is widely used to explore human behavior intentions in the field of technology, to explore the relationship between four barriers to innovation adoption (value barriers, risk barriers, image barriers,
and traditional belief barriers) and Taiwanese people’s intention to use the apps of FDPs with the mediating effects of perceived ease of use and perceived usefulness.
The study conducted an online-based structural questionnaire to understand the opinion of Taiwanese people who have used the apps of FDPs or who have enough understanding of the apps. Finally, the study got 286 valid samples from SurveyCake.
The results are below:
(1) Perceived ease of use fully mediates the relationship of value barrier and the intention to use.
(2) The partial mediating effects of perceived ease of use and perceived usefulness both reduce the negative impact of the image barrier on the intention to use.
(3) The partial mediating effects of perceived usefulness reduce the negative impact of the tradition barriers on the intention to use.
(4) People with different traits and differences in usage habits can indeed affect people's perception of barriers to innovation adoption.
中文文獻
1.Alstyne, M. W. V., Parker, G. G., & Choudary, S. P. (2016). 平台經濟新遊戲規則. 哈佛商業評論, 2016年4月號, 70-80.
2.王業竣, 郭芳智, & 張世其. (2014). 消費者油電混合車知覺價值對購買意願影響之研究. [A Study of the Influence of Consumer Perceived Value on Purchase Intention-A Case of Hybrid Car]. 管理資訊計算, 3, 304-317. doi:10.6285/mic.3(1)s.25
3.朱斌妤, 黃仟文, & 翁少白. (2008). 以科技接受模式探討即時交通資訊系統之使用意願. 電子商務學報, 10(1), 173-200.
4.行政院主計總處. 家庭收支調查報告. Retrieved from https://www.dgbas.gov.tw/ct.asp?xItem=27900&ctNode=3240&mp=1
5.李城忠, 吳朝森, & 王文君. (2012). The Effects of Sport Involvement, Sponsor Awareness and Brand Image on Purchase Intention to Sponsors' Products. [運動涉入、贊助知覺、品牌形象對贊助商產品購買意願影響之研究]. 運動休閒管理學報, 9(2), 36-51.
6.李建逸. (2018). 食物外送平台之補貼策略. In 資訊管理學研究所 (pp. 1-67): 國立臺灣大學.
7.杜彥劭. (2018). 服務缺失, 顧客情緖與顧客反應之關聯-以熟食外送平台為例. 撰者,
8.汪美香, & 葉桂珍. (2000). 消費者屬性、網站滿意度與網路購物意願關係之研究. [The Relationships among Consumer Attributes, Users' Satisfactions on Web and WWW Purchase Intention]. 企業管理學報(48), 121-137.
9.沈錦蔚. (2011). 以創新抵制理論探討電信用戶使用電子帳單意願.
10.林聖偉. (2019). 外送平台顧客滿意度之影響因素與顧客使用頻率的關係. In 企業管理學系所 (pp. 1-47): 國立中興大學.
11.林榮春, 邱天佑, & 林茂雄. (2011). 影響網路銀行實際使用行爲之研究. 顧客滿意學刊, 7(1), 1-22.
12.林震岩. (2018). 多變量分析:SPSS的操作與應用. In. 台北市: 智勝文化.
13.邱皓政. (2010). 量化研究與統計分析-SPSS (PASW) 資料分析範例 (五版). 臺北: 五南.
14.洪新原, 梁定澎, & 張嘉銘. (2005). 科技接受模式之彙總研究. 資訊管理學報, 12(4), 211-234.
15.胡桂珍. (2013). O2O 模式在我國餐飲企業中的應用研究. 中國商貿, 7, 128-129.
16.范嵐. (2013). 微信用戶持續使用意願研究. 北京郵電大學,
17.張修豪. (2019). 台灣之美食外送平台價值主張與價值適配研究-以Uber Eats為例. 國立臺灣大學, Available from Airiti AiritiLibrary database. (2019年)
18.張琇婷. (2019). 消費者的價值觀對於美食外送平台使用意圖之探討-以便利性為中介變數. In 國際企業研究所 (pp. 1-50): 國立成功大學.
19.畢孫武. (2017). 以創新抵制理論探討數位有線電視附加服務的採用意願. 中山大學行銷傳播管理研究所學位論文(2017 年), 1-78.
20.許恩典. (2017). 科技接受模型與創新抵制探討消費者在便利商店使用行動支付之意願-以 Apple pay 和街口支付為例. 成功大學企業管理學系學位論文, 1-113.
21.許端芳, 高懿柏, & 莊雅婷. (2011). 應用科技接受模式探討消費者採用電子錢包之因素. 創新與管理, 8(1), 95-117.
22.陳芃婷, 陳建宏, & 郭書辰. (2009). 運用創新抵制理論探究多媒體行動廣告之發展困境. Retrieved from 2009年台灣科技大學第八屆管理新思維學術研討會:
23.陳宛鈴, & 姜齊. (2011). 以 TAM 模型探討日貨連線購物賣家形象與信任對消費者購買意願的影響.
24.曾劍秋, & 王帆. (2015). O2O 線上外賣用戶滿意度研究與實證分析. 現代情報, 35(8), 17-21.
25.黃勝雄. (2018). 強化資訊安全信心 跨越初期使用障礙--行動支付市場評論. 臺灣經濟論衡, 16(2), 79-95.
26.黃懿諄. (2002). 網路訂餐消費行為之研究-由決策過程分析. 國立東華大學,
27.經濟部統計處. 2008~2019年餐飲業營業額 Retrieved from https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateEA.aspx
28.廖國鋒, 朱宗緯, & 李堯賢. (2005). The Effects of Risk Reduction Strategies on Consumers' Risk Perceptions and Online Purchase Intention. [風險降低策略對消費者知覺風險和網路購物意願影響之研究]. Pan-Pacific Management Review, 8(1), 1-37. doi:10.30166/ppmr.200501.0001
29.鄭介東. (2018). 整合 O2O 餐點外送之生產與配送問題. In: 國立交通大學.
30.鄭全閎. (2019). 以科技接受模式與消費價值理論探究使用網路訂餐 APP 因素. 成功大學經營管理碩士學位學程 (AMBA) 學位論文(2019 年), 1-83.
31.盧儀倫. (2019). 熟食外送平台使用行為之研究. 政治大學國際經營與貿易學系學位論文, 1-126.
32.蕭鈺錦. (2018). 餐飲外送平台之價值:平台合作夥伴觀點. In 企業管理學系: 國立彰化師範大學.
33.羅子明. (2001). 品牌形象的構成及其測量. 《北京工商大學學報(社會科學版)》(4), 19-22.
34.龔于鈞. (2018). 品牌形象及個人涉入程度對雲端儲存服務 購買意願之影響. 交通大學管理科學系所學位論文, 1-73.
英文文獻
1. Aghekyan-Simonian, M., Forsythe, S., Kwon, W. S., & Chattaraman, V. (2012). The role of product brand image and online store image on perceived risks and online purchase intentions for apparel. Journal of Retailing and Consumer Services, 19(3), 325-331.
2. Ajzen, I., & Cote, N. G. (2008). Attitudes and the prediction of behavior. Attitudes and attitude change, 289-311.
3. Bagozzi, R. P., & Lee, K.-H. (1999). Consumer resistance to, and acceptance of, innovations. Advances in consumer research, 26(1).
4. Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191.
5. Bauer, R. A. (1960). Consumer behavior as risk taking. Chicago, IL, 384-398.
6. Berthon, P., Pitt, L., Ewing, M., & Carr, C. L. (2002). Potential research space in MIS: A framework for envisioning and evaluating research replication, extension, and generation. Information Systems Research, 13(4), 416-427.
7. Cekani, K. (2019). $9.6 Billion in Investments Spurring Aggressive Expansion of Food Delivery Companies. Retrieved from https://ww2.frost.com/news/press-releases/9-6-billion-in-investments-spurring-aggressive-expansion-of-food-delivery-companies/
8. Cho, Y. C., & Sagynov, E. (2015). Exploring factors that affect usefulness, ease of use, trust, and purchase intention in the online environment. International Journal of Management & Information Systems (IJMIS), 19(1), 21-36.
9. Dabholkar, P. A. (1996). Consumer evaluations of new technology-based self-service options: an investigation of alternative models of service quality. International Journal of research in Marketing, 13(1), 29-51.
10. Davidson, R. S., & Walley, P. B. (1985). Computer fear and addiction: Analysis, prevention and possible modification. Journal of Organizational Behavior Management, 6(3-4), 37-52.
11. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
12. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
13. Dichter, E. (1985). What's in an image. Journal of consumer marketing.
14. Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information & management, 36(1), 9-21.
15. Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of marketing research, 28(3), 307-319.
16. Featherman, M., & Fuller, M. (2003). Applying TAM to e-services adoption: the moderating role of perceived risk. Paper presented at the 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.
17. Featherman, M. S., Miyazaki, A. D., & Sprott, D. E. (2010). Reducing online privacy risk to facilitate e‐service adoption: the influence of perceived ease of use and corporate credibility. Journal of Services Marketing.
18. Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International journal of human-computer studies, 59(4), 451-474.
19. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
20. Fishbein, M., & Ajzen, I. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, N.J. : Prentice-Hall.
21. Fournier, S. (1998). Consumer resistance: societal motivations, consumer manifestations, and implications in the marketing domain. In: ASSOC CONSUMER RESEARCH GRAD SCHOOL MANAGEMENT, BRIGHAM YOUNG UNIV, PROVO ….
22. Hirschberg, C., Rajko, A., Schumacher, T., & Wrulich, M. (2016). The changing market for food delivery. Retrieved from https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-changing-market-for-food-delivery
23. Holak, S. L., & Lehmann, D. R. (1990). Purchase intentions and the dimensions of innovation: An exploratory model. Journal of Product Innovation Management: AN INTERNATIONAL PUBLICATION OF THE PRODUCT DEVELOPMENT & MANAGEMENT ASSOCIATION, 7(1), 59-73.
24. Hossain, F., & Adelaja, A. O. (2000). Consumers’ Interest in Alternative Food Delivery Systems: Results from a Consumer Survey in New Jersey. Journal of Food Distribution Research, 31(856-2016-56448), 49-67.
25. Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of management information systems, 16(2), 91-112.
26. Ionela-Andreea, P. (2019). Consumer Resistance to Innovation in the Fashion Industry. Studies in Business and Economics, 14(2), 127-140.
27. Kirschling, P., & Linneman, R. (1997). Selling the home shopping option. Supermarket Business Magazine, 52(2), 39-41.
28. Li, Y.-H., & Huang, J.-W. (2009). Applying theory of perceived risk and technology acceptance model in the online shopping channel. World Academy of Science, Engineering and Technology, 53(1), 919-925.
29. Milberg, S. J., Whan Park, C., & McCarthy, M. S. (1997). Managing negative feedback effects associated with brand extensions: The impact of alternative branding strategies. Journal of Consumer Psychology, 6(2), 119-140.
30. Mitchell, V. W. (1999). Consumer perceived risk: conceptualisations and models. European Journal of marketing.
31. Ram, S. (1987). A model of innovation resistance. ACR North American Advances.
32. Ram, S. (1989). Successful innovation using strategies to reduce consumer resistance an empirical test. Journal of Product Innovation Management, 6(1), 20-34.
33. Ram, S., & Sheth, J. N. (1989). Consumer Resistance to Innovations: The Marketing Problem and its Solutions. The Journal of Consumer Marketing, 6(2).
34. Raza, S. A., Umer, A., & Shah, N. (2017). New determinants of ease of use and perceived usefulness for mobile banking adoption. International Journal of Electronic Customer Relationship Management, 11(1), 44-65.
35. Robey, D. (1979). User attitudes and management information system use. Academy of Management Journal, 22(3), 527-538.
36. Rogers, E. M. (1983). Diffusion of innovations (Third Edition ed.). New York: A Division of Macmillan Publishing Co., Inc.
37. Rogers, E. M., & Shoemaker, F. F. (1971). Communication of Innovations; A Cross-Cultural Approach.
38. Roh, M., & Park, K. (2019). Adoption of O2O food delivery services in South Korea: The moderating role of moral obligation in meal preparation. International Journal of Information Management, 47, 262-273.
39. Rose, J., & Fogarty, G. J. (2006). Determinants of perceived usefulness and perceived ease of use in the technology acceptance model: senior consumers' adoption of self-service banking technologies. Paper presented at the Proceedings of the 2nd Biennial Conference of the Academy of World Business, Marketing and Management Development: Business Across Borders in the 21st Century.
40. Roy, S. K., Kesharwani, A., & Bisht, S. S. (2012). The impact of trust and perceived risk on internet banking adoption in India. International Journal of Bank Marketing.
41. Schepers, J., & Wetzels, M. (2006). A meta-analysis of the technology acceptance model: investigating subjective norm and moderation effects. Information &. Management. v44 i1, 90-103.
42. Schierholz, R., & Laukkanen, T. (2007). Internet vs mobile banking: comparing customer value perceptions. Business process management journal.
43. Sheeran, P., Norman, P., & Orbell, S. (1999). Evidence that intentions based on attitudes better predict behaviour than intentions based on subjective norms. European journal of social psychology, 29(2‐3), 403-406.
44. Sheth, J. N., & Stellner, W. H. (1979). Psychology of innovation resistance: the less developed concept (LDC) in diffusion research. Faculty working papers/University of Illinois at Urbana-Champaign, College of Commerce and Business Administration, no. 622.
45. Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychological methods, 7(4), 422.
46. Singh, S. (2019). The Soon To Be $200B Online Food Delivery Is Rapidly Changing The Global Food Industry. Retrieved from https://ww2.frost.com/frost-perspectives/the-soon-to-be-200b-online-food-delivery-is-rapidly-changing-the-global-food-industry/.
47. Software, M. 11 Reasons Why Food Ordering Apps became Popular? Retrieved from https://meandersoftware.co/11-reasons-why-food-ordering-apps-became-popular/
48. Srivastava, M., & Kamdar, R. M. (2009). Brand image formation as a function of involvement and familiarity. Paradigm, 13(1), 84-90.
49. Szmigin, I., & Foxall, G. (1998). Three forms of innovation resistance: the case of retail payment methods. Technovation, 18(6-7), 459-468.
50. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.
51. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
校內:立即公開