簡易檢索 / 詳目顯示

研究生: 鄭智高
Cheng, Chih-Kao
論文名稱: 低溫燒結壓電陶瓷的製作及其在表面聲波濾波器的應用
Low-temperature sintering of PbTiO3 based ceramics and its SAW filter Applications
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 67
中文關鍵詞: 表面聲波元件鈦酸鉛
外文關鍵詞: SAW, lead titanate
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本實驗中,使用傳統的球磨法來混合製作不同的陶瓷體,以摻雜釤(Sm)與錳(Mn)的PbTiO3即(Pb0.85Sm0.1)(Ti0.98Mn0.02)O3 (PT)為主體成份,並使用Ba(Cu0.5W0.5)O3 (BCW)、BiFeO3 (BF)、與SiO2等不同的摻雜添加物來幫助陶瓷體低溫燒結的達成。
      本實驗使用X-ray diffraction (XRD)以及scanning electron microscope (SEM)來對不同陶瓷體的成份特性與微結構做分析,並探討其不同份量摻雜對陶瓷體燒結溫度與電特性的影響。由實驗結果可看出,本實驗成功地驗證了Ba(Cu0.5W0.5)O3 (BCW)、BiFeO3 (BF)、與SiO2等不同的摻雜添加物確實有降低PT陶瓷體燒結溫度的作用(由1200℃降至1100℃),並在降低燒結溫度的同時仍保有良好的壓電與介電特性。
      本實驗中亦成功地將不同成份的陶瓷體製作成表面聲波濾波器,並量測出波速(phase velocity)、頻率溫度係數(TCF)等特性參數。

      Samarium (Sm) modified lead titanate (PbTiO3) ceramics with a composition of (Pb0.85Sm0.1)(Ti0.98Mn0.02)O3 (PT) piezoceramics doped with Ba(Cu0.5W0.5)O3 (BCW), BiFeO3 (BF), and SiO2 were prepared by conventional mixed-oxide method.
      Microstructural and compositional analyses of these PbTiO3-based ceramics have been carried out using X-ray diffraction (XRD) and scanning electron microscope (SEM). The effects of BCW, BF, and SiO2 additives on sintering temperature and piezoelectric properties of these ceramics have been investigated. We have successfully showed that additives like BCW, BF, and SiO2 were helpful in lowering PT’s sintering temperature from 1200℃ to 1100℃ and still keep good piezoelectric and dielectric properties.
      Surface acoustic wave (SAW) filters were also fabricated and properties, including phase velocity and temperature coefficient of frequency (TCF), were measured.

    摘要……………………………………………………………………Ⅰ Abstract……………………………………………………………..Ⅱ 誌謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 圖表目錄………………………………………………………………Ⅶ 第一章 緒論…………………………………………….………01 1.1研究背景與動機………………………………………………01 1.2低溫液相燒結…………………………………………………02 1.1.1 BiFeO3、Ba(Cu0.5W0.5)O3………………………………02 1.1.2 SiO2……………………………………………………….03 1.3論文架構………………………………………………………04 第二章 原理…………………………………………………….05 2.1 壓電現象…………………………………………………….05  2.1.1壓電效應…………………………………………………05  2.1.2正壓電效應(Direct piezoelectric effect)……….06  2.1.3逆壓電效應(Converse piezoelectric effect).....06 2.2 壓電方程式………………………………………………….06 2.3 壓電諧振體………………………………………………….08 2.4 壓電特性參數……………………………………………….09  2.4.1機電耦合因數(electromechanical coupling factor, K)…………...09  2.4.2介電損失(dielectric loss)……………………………………........10  2.4.3機械品質因數(mechanical quality factor)………………………....10 2.5表面聲波濾波器基本原理……………………………………………………….11  2.5.1基本概念…………………………………………………………………….11  2.5.2 SAW filter 等效電路及模型分析……………………………………….12 第三章 製程步驟與量測…………………………………………………………..14 3.1 陶瓷體的備製…………………………………………………………………..14 3.2 SAW filter的製作……………………………………………………………..15 3.3 陶瓷體分析及特性量測…………………………………………………………16  3.3.1 X-ray和SEM………………………………………………………………..16  3.3.2密度………………………………………………………………………….16  3.3.3溫度特性量測……………………………………………………………….16  3.3.4陶瓷體電性量測…………………………………………………………….16  3.3.5 SAW filter特性量測………………………………………………………18 第四章 結果與討論…………………………………………………………………20 4.1 (Pb0.85Sm0.1)(Ti0.98Mn0.02)O3 摻雜BiFeO3、Ba(Cu0.5W0.5)O3……….20 4.1.1 kt與kp………………………………………………………………………..20 4.1.2介電常數(Dielectric Constant)與介電損失(Dielectric Loss)……….20 4.1.3 SEM與晶粒大小(Grain Size)……………………………………………….21 4.1.4 XRD圖………………………………………………………………………….21 4.1.5密度(Density)…………………………………………………………………21 4.1.6 SAW filter……………………………………………………………………21 4.2 (Pb0.85Sm0.1)(Ti0.98Mn0.02)O3 摻雜SiO2…………………………………22 4.2.1 kt與kp…………………………………………………………………………23 4.2.2介電常數(Dielectric Constant)與介電損失(Dielectric Loss)……….23 4.2.3厚度頻率常數(Nt)、徑向頻率常數(Np)…………………………………….24 4.2.4晶粒大小(Grain Size)與SEM…………………………………………………24 4.2.5 XRD圖………………………………………………………………………….26 4.2.6 DSC圖………………………………………………………………………….26 4.2.7密度(Density)…………………………………………………………………27 4.2.8 SAW filter……………………………………………………………………27 第五章 結論…………………………………………………………………………29 參考文獻………………………………………………………………………………65

    [01] R. M. White and F. W. Vlotmer, Appl. Phys. Lett., 17, 314 (1965)
    [02] C. C. Tseng, J. Appl. Phys., 38 4281 (1967)
    [03] M. Kodama, H. Egami and S. Yoshida, Jpn. J. Appl. Phys., 14, 1847 (1975)
    [04] Y. Ito, H. Takeuchi, S. Jyomura, K. Nagatsuma and Ashida, Appl. Phys. Lett., 35, 595 (1979)
    [05] H. Takeuchi and K. Yamashita, J. Appl. Phys., 53, 6147 (1982)
    [06] G. Feuillard, M. Lethiecq, Y. Amazit, D. Certon, C. Millar and F. Patat, J. Appl. Phys., 71, 6523 (1993)
    [07] G. Feuillard, M. Lethiecq, Y. Janin, L. Tessier and L. Pourcelot, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 44, 194 (1997)
    [08] Damjanovic, W. Wolny, H. Engan, M. Lethiecq and L. Pardo, IEEE Intern. Freq. Contr. Symp., 770 (1998)
    [09] X. R. Xue, J. N. Kim, S. J. Jang, L. E. Cross, and R. E. Newnham, Jpn. J. Appl. Phys., 24, suppl. 24-2, 718 (1985)
    [10] G. Tomandl, A. Stiegelschmitt, and R. Böhner, Science of Ceramics, 14, 305 (1988)
    [11] R. Lal, N. M. Gokhale, R. Krishnan, and P. Ramakrishnan, J. Mater. Sci., 24, 2911 (1989)
    [12] C. E. Millar, L. Pedersen, L. Pardo, J. Ricote, C. Alemany, B. Jimenez, G. Feuillard, M. Lethiecq, IEEE Int. Symp. Appl. Ferroelectrics, 138 (1994)
    [13] D. Dong, X. Maoren, M. Kenji, and K. Shoji, Ferroelectrics, v 145, n 1-4, 125 (1993)
    [14] D. Dong, M. Kenji, K. Shoji, and X. Maoren, J. Ceram. Soc. Jpn, v 101, n 10, 1061 (1993)
    [15] P. W. Lu, W. M. Zhang, W. R. Xue, X. F. Wang, and W. Huebner, IEEE Int. Symp. Appl. Ferroelectrrics, 134 (1995)
    [16] W. D. Kingery, J. Appl. Phys, 30, 301 (1959)
    [17] Boen Houng, Chan Young Kim, Michael J. Haun, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., v 47, n 4, 808 (2000)
    [18] E. Ringgaard, E. R. Nielsen, and W. W. Wolny, IEEE Int. Symp. Appl. Ferroelectrrics, 1, 451 (2000)
    [19] Chunz-Heuy Wang and Long Wu, Jpn. J. Appl. Phys. Part 2: Lett., v 32, n 7, 3209 (1993)
    [20] E. R. Nielsen, E. Ringgaard, and M. Kosec, J. European Ceram. Soc., v 22, n 11, 1847 (2002)
    [21] J. S. Wright, L. F. Francis, J. Mater. Res., 8, 1712 (1993)
    [22] V. R. Palkar, S. C. Purandare, R. Pinto, Mater. Lett., v 43, n 5-6, 329 (2000)
    [23] J. Curie and P. Curie, Bull. Soc. Min. France, 3, 90 (1880)
    [24] W. G. Hankel, Abh. Sächs, 12, 547 (1881)
    [25] W. G. Hankel, Ber Sächs, 33, 52 (1881)
    [26] G. Lippmann, An. Chim. Phys. Ser., 5, 24, 145 (1881)
    [27] Michael Thompson and David C. Stone, Surface-Launched Acoustic Wave Sensor, Wiley-interscience (1997)
    [28] 吳朗, 電子陶瓷(壓電), 全欣科技圖書, 7
    [29] 吳朗, 電子陶瓷(壓電), 全欣科技圖書, 16
    [30] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, 25
    [31] 吳朗, 電子陶瓷(壓電), 全欣科技圖書, 31
    [32] C. K. Campbell, Surface acoustic wave devices for mobile and wireless communication, 71
    [33] Supriyo Datta, Surface acoustic wave devices, 18
    [34] David P. Morgan, Surface-wave devices for signal processing, 57
    [35] C. K. Campbell, Surface acoustic wave devices for mobile and wireless communication, 113
    [36] C. K. Campbell, Surface acoustic wave devices for mobile and wireless communication, 101
    [37] Shoji Kaneko, Kenji Murakami, Daisuke Mabuchi, Takahiro Kurita, Yosuke Niwa, IEEE Int. Symp. Appl. Ferroelectrrics, 2, 727 (1996)
    [38] Ajai Garg, D. C. Agrawal, Mater. Sci. and Engineering B56, v 60, n 1, 46 (1999)
    [39] IRE standards on piezoelectric crystals, Measurements of piezoelectric ceramics, Proc. IRE, 49, 1161 (1961)
    [40] 吳朗, 電子陶瓷(壓電), 全欣科技圖書, 50-64
    [41] M. Onoe, H. F. Tiersten, and A. H. Meitzier, J. Acoustic. Soc. Am., v 35, n 1, 36 (1963)
    [42] 陳皇均, 陶瓷材料概論(上冊), 曉園出版社, 437
    [43] Yuanwei Zhang, Anxiang Kuang, Helen Lai-Wah Chan, Microelectronic Engineering, v 66, n 1-4, 918 (2003)
    [44] 陳皇均, 陶瓷材料概論(上冊), 曉園出版社, 474
    [45] K. Masao, K. Kazuaki, J. Am. Ceram. Soc., 84, 2469 (2001)
    [46] C. G. Sivan Pillai, P. V. Ravindran, Thermochimica Acta, 278, 109 (1996)
    [47] Masao Kondo, Kazuaki Kurihara, J. Am. Ceram. Soc., v 84, n 11, 2469 (2001)
    [48] 陳皇均, 陶瓷材料概論(上冊), 曉園出版社, 428
    [49] D. L. Corker, R. W. Whatmore, E. Ringgaard, and W. W. Wolny, J. European Ceram. Soc., v 22, n 11, 1847 (2002)

    下載圖示 校內:2005-06-30公開
    校外:2005-06-30公開
    QR CODE