| 研究生: |
葉佳楠 Yeh, Chia-Nan |
|---|---|
| 論文名稱: |
高效能CMOS影像感測器系統 High Performance CMOS Image Sensor System |
| 指導教授: |
賴源泰
Lai, Yen-Tai |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | CMOS 影像感測器 、低功率 、移位暫存器 、時脈閘 、快閃式類比數位轉換器 、解碼器 、數位像素感測器 、寬動態範圍 、對數響應 |
| 外文關鍵詞: | CMOS Image Sensor, Low Power, Shift Register, Clock Gating, Flash ADC, Decoder, Digital Pixel Sensor, Wide Dynamic Range, Logarithmic Response |
| 相關次數: | 點閱:120 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,首先提出兩個節省功率的技術,以降低一般CMOS影像感測器中使用位移暫存器架構製作的讀出控制電路的動態及靜態功率消耗。為了降低動態的消耗功率,我們設計了一個新式的時脈閘控單元電路並將這個元件放置於分散式時脈樹中每個反相器前。透過時脈閘控單元控制時脈的供應,位移暫存器中沒有工作的正反器將被關閉。此外,這些時脈閘控單元的控制訊號可透過位移暫存器自身產生的內部訊號作控制而不需額外的控制訊號。經由分析與模擬得到動態的功率消耗與位移暫存器中D型正反器的數目呈對數比例。當讀出一個像素陣列大於或等於128×128,可節省超過90%的動態消耗功率。漏電流是靜態功率消耗的主因。我們結合電晶體疊接技巧設計了一個新型的低漏電流D型正反器以降低超過80%的靜態消耗功率。
第二,針對一般CMOS影像感測器中使用快閃式類比數位轉換器,我們提出一個摺疊技術來降低解碼器部分的電路複雜度。原本k個位元的解碼器經過摺疊形成兩個子解碼器,分別處理k/2個高位元與k/2個低位元的解碼。每個子解碼器的輸入數目減少為原本數目的平分根。經由分析,對於不同架構的解碼器,可減少超過17%的硬體消耗及13%的時間延遲並同時提升抗泡沫引發雜訊的能力。我們利用0.18 μm CMOS製程實作了一個六位元的快閃式類比數位轉換器,面積為0.37 mm×0.35 mm。經由模擬,在十億分之一秒取樣速度下得到優值數為1.03 pJ/conversion-step並且最大泡沫引發雜訊會被限制在泡沫的個數內。
第三,針對數位式CMOS影像感測器的應用,我們提出了一個適應性取樣演算法並發展了一個可同時具備高動態範圍與近對數響應的數位式CMOS影像感測器。像素層級的類比數位轉換利用結合一個比較器與一個四位元的靜態記憶體來實現。這個感測器可提供線性與對數的響應模式。在不同的響應模式下,透過提出的時序控制機制,每個像素對應的八位元數位輸出值可被決定並取得,而像素層級的訊號處理特性可降低整體電路的功率與硬體消耗。新式的數位像素感測器面積約為15.8 μm×15.8 μm 而填滿因子為21%。模擬結果得到新式的數位像素感測器可正常運作而可達到的動態範圍在線性與對數響應模式中分別為48 dB 與 114 dB。
In this dissertation, first, two power saving techniques are proposed to reduce both dynamic and static power consumption of shift-register-based readout control circuits in conventional CMOS image sensors. To reduce the power consumption in dynamic domain, a new clock gating control unit (CGCU) is designed and inserted in front of an inverter in the distributed clock tree. The CGCUs operate as pruners for disabling portions of the circuitry where flip-flops do not change state. Without using extra control signals, the signals generated by the shift register itself are utilized as the control signals of CGCUs. According to the analysis and simulations, the dynamic power dissipation is proportional to the logarithm of the number of D flip-flops. More than 90% of dynamic power saving is achieved when reading out a frame with size of equal to or larger than 128×128. The static power dissipation is mainly from the leakage current. A low leakage D filp-flop by adopting the stack technique is designed. Simulations show that more than 80% of static power saving is achieved.
Second, a folding technique is proposed to reduce the decoder circuit complexity of a flash ADC in the conventional CMOS image sensors. After folding, a k-bit decoder is replaced with two sub-decoders. The decoding of the upper k/2 bits and the lower k/2 bits can be accomplished respectively. Consequently, the number of inputs to the decoder is reduced to the square root of the original. Analytic results show that for different decoder structures, more than 17% of hardware and 13% of time delay can be saved. Moreover, the tolerance of bubble induced errors is enhanced. A 6-bit flash ADC has been implemented in 0.18-μm CMOS that occupies 0.37mm×0.35mm active area. Simulations show that the figure-of-merit number is as low as 1.03 pJ/conversion-step at 1G Sample/s and the maximum bubble induced error is limited to the number of bubbles.
Third, we propose an adaptive-sampling algorithm and develop a digital CMOS pixel sensor which has features of wide dynamic range and approximated-logarithmic response. In this new architecture the pixel-level analog-to-digital conversion is realized by employing a comparator combined with a 4-bit in-pixel static memory. Under different response modes, the corresponding 8 bits digitalized value of a pixel can be obtained by applying the proposed timing control schemes. Since the signal processing is accomplished at pixel-level, both power consumption and hardware cost are lowered. The designed pixel occupies an area of 15.8 μm×15.8 μm with a fill factor of 21%. Simulation results validate the effectiveness of the proposed DPS and the achievable dynamic range is 48 dB in linear response mode and 114 dB in logarithmic response mode respectively.
[1] E. R. Fossum, “CMOS Image Sensors: Electronic Camera-On-A-Chip,” IEEE Trans. Electron Devices, vol. 44, no. 10, pp. 1689-1698, Oct. 1997.
[2] K. –B. Cho, A. Krymski, and E. R. Fossum, “A 1.2 V Micropower CMOS Active Pixel Sensor for Portable Applications,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, pp. 114-115, Feb. 2000.
[3] K. Yoon, C. Kim, B. Lee, and D. Lee, “Single-Chip CMOS Image Sensor for Mobile Applications,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, vol. 45, pp. 36-37, Feb. 2002.
[4] S. –M. Sohn, S. –H. Kim, S. –H. Lee, K. –J. Lee, and S. Kim, “A CMOS Image Sensor (CIS) Architecture with Low Power Motion Detection for Portable Security Camera Applications,” IEEE Trans. Consumer Electronics, vol. 49, no. 4, pp. 1227-1233, Nov. 2003.
[5] H. –S. Cho, M. –H. Jeong, B. –S. Han, S. Kim, B. –S. Lee, H. –K. Kim, and S. –C. Lee, “Development of a Portable Digital Radiographic System Based on FOP-coupled CMOS Image Sensor and Its Performance Evaluation,” IEEE Trans. Nuclear Science, vol. 52, no. 5, pp. 1766-1772, Oct. 2005.
[6] N. Akahane, S. Sugawa, S. Adachi, and K. Mizobuchi, “Wide Dynamic Range CMOS Image Sensors for High Quality Digital Camera, Security, Automotive and Medical Applications,” in IEEE 5th Conf. Sensors, pp. 396-399, 2006.
[7] J. Moholt, T. Willassen, J. Ladd, F. Xiaofeng, and D. Gans, “A 2Mpixel 1/4-inch CMOS Image Sensor with Enhanced Pixel Architecture for Camera Phones and PC Cameras,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, pp. 58-59, Feb. 2008.
[8] S. –H. Yang, K. –B. Kim, E. –J. Kim, K. –H. Baek, and S. Kim, “An ultra low power CMOS motion detector,” IEEE Trans. Consumer Electronics, vol. 55, no. 4, pp. 2425-2430, Nov. 2009.
[9] I. Takayanagi, M. Shirakawa, K. Mitani, M. Sugawara, S. Iversen, J. Moholt, J. Nakamura, and E. R. Fossum, “A 1.25-inch 60-Frames/s 8.3-M-Pixel Digital-Output CMOS Image Sensor,” IEEE J. Solid- State Circuits, vol. 40, no. 11, pp. 2305-2314, Nov. 2005.
[10] P. Centen, S. Lehr, V. Neiss, S. Roth, J. Rotte, H. Schemmann, M. Schreiber, P. Vogel, B. –K. Teng, and K. Damstra, “A 2/3 inch CMOS Image Sensor for HDTV Applications with Multiple High-DR Modes and Flexible Scanning,” in IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, pp. 512-513, Feb. 2007.
[11] S. Matsuo, T. J. Bales, M. Shoda, S. Osawa, K. Kawamura, A. Andersson, H. Munirul, H. Honda, B. Almond, M. Yahwu, J. Gleason, T. Chow, I. Takayanagi, “8.9-Megapixel Video Image Sensor With 14-b Column-Parallel SA-ADC,” IEEE Trans. Electron Devices, vol 56, no. 11, pp. 2380-2389, Nov. 2009.
[12] C. Xu, W. Zhang, W. Ki, and M. Chan, “A 1.0-V VDD CMOS Active-Pixel Sensor With Complementary Pixel Architecture and Pulsewidth Modulation Fabricated With a 0.25 μm CMOS Process,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1853-1859, Jun. 2002.
[13] K. B. Cho, A. I. Krymski, and E. R. Fossum, “A 1.5V 550μW 176×144 autonomous CMOS active pixel image sensor,” IEEE Trans. Electron Devices, Special Issue on Image Sensors, vol. 50, pp. 96-105, Jan. 2003.
[14] A. Fish, S. Hamami, and O. Yadid-Pecht, “CMOS Image Sensors With Self-Powered Generation Capability,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 53, no. 11, pp. 1210-1214, Nov. 2006.
[15] S. Hanson, ZhiYoong Foo, D. Blaauw, and D. Sylvester, “A 0.5 V Sub-Microwatt CMOS Image Sensor With Pulse-Width Modulation Read-Out,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 759-767, Apr. 2010.
[16] S. Tanner, A. Heubi, M. Ansorge, and F. Pellandini, “An 8-bit low-power ADC array for CMOS image sensors,” in IEEE Int. Conf. Electronics, Circuits and Systems, pp. 147-150, 1998.
[17] J. Bouvier, M. Dahoumane, D. Dzahini, J. Y. Hostachy, E. Lagorio, O. Rossetto, H. Ghazlane, and D. Dallet, “A Low Power and Low Signal 5-bit 25 MS/s Pipelined ADC for Monolithic Active Pixel Sensors,” IEEE Trans. Nuclear Science, vol. 54, no. 4, pp. 1196-1200, Aug. 2007.
[18] A. Mahmoodi and D. Joseph, “Optimization of Delta-Sigma ADC for Column-Level Data Conversion in CMOS Image Sensors,” in IEEE Proc. Instrumentation and Measurement Technology Conf., pp. 1-6, May 2007.
[19] C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128×128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2977-2989, Dec. 2008.
[20] J. –F. Lin, S. –J. Chang, C. –F. Chiu, H. –H. Tsai, and J. –J. Wang, “Low-Power and Wide-Bandwidth Cyclic ADC With Capacitor and Opamp Reuse Techniques for CMOS Image Sensor Application,” IEEE J. Sensor, vol. 9, no. 12. pp. 2044-2054, Dec. 2009
[21] D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, 1997.
[22] R. J. Baker, H. W. Li and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, John Wiley & Sons, 1997.
[23] F. Kaess, R. Kanan, B. Hochet, and M. Declercq, “New Encoding Scheme for High-Speed Flash ADC’s,” IEEE Proc. Circuits and Systems, vol. 1, pp. 5-8, June 1997.
[24] P. C. S. Scholtens and M. Vertregt, “A 6-b 1.6-Gsamples/s Flash ADC in 0.18-μm CMOS Using Averaging Termination,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1599-1609, Dec. 2002
[25] M. Choi and A. A. Abidi, “A 6-b 1.3-Gsample/s A/D converter in 0.35μm CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1847-1858, Dec. 2001.
[26] P. M. Figueiredo and J. C. Vital, “Averaging Technique in Flash Analog-to-Digital Converters,” IEEE Trans. Circuits and Systems-Ⅰ: Regular Papers, vol. 51, no. 2, pp. 233-253, Feb. 2004.
[27] S. Tsukamoto, W. G. Schofield, and T. Endo, “A CMOS 6-b, 400-MSample/s ADC with Error Correction,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp.1939-1947, Dec. 1998.
[28] C. –C. Huang and J. –T. Wu, “A Background Comparator Calibration Technique for Flash Analog-to-Digital Converters,” IEEE Trans. Circuits and Systems-Ⅰ: Regular Papers, vol. 52, no. 9, pp. 1732-1740, Nov. 2005.
[29] M. Steyaert, R. Roovers, and J. Craninckx, “A 100-MHz 8-bit CMOS Interpolating A/D Converter,” in Proc. IEEE Custom Integrated Circuits Conf., pp. 28.1.1-28.1.4, May 1993.
[30] F. Kaess, R. Kanan, B. Hochet, and M. Declercq, “New encoding scheme for high-speed flash ADC’s,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 1, pp. 5-8, Jun. 1997.
[31] S. Padoan, A. Boni, C. Morandi, and F. Venturi, “A Novel Coding Schemes for the ROM of Parallel ADCs, Featuring Reduced Conversion Noise in the Case of Single Bubbles in the Thermometer Codes,” in IEEE Int. Conf. Circuits and Systems, pp. 271-274, 1998.
[32] K. Uyttenhove and M. S. J. Steyaert, “A 6-bit 1GHz Acquisition Speed CMOS Flash ADC with Digital Error Correction,” in IEEE Proc. Custom Integrated Circuits Conf., pp. 249-252, 2000.
[33] D. Lee, J. Yoo, K. Choi and J. Ghaznavi, “Fat Tree Encoder Design for Ultra-High Speed Flash A/D Converters,” in IEEE 45th Midwest Symp. Circuits and Systems, vol.2, pp. 87-90, Aug. 2002.
[34] E. Säll, M. Vesterbacka, and K. O. Andersson, “A Study of Digital Decoders in Flash Analog-to-Digital Converters,” in IEEE Proc. Int. Symp. Circuits and Systems, vol. 1, pp. 129-132, May 2004.
[35] E. Säll, M. and Vesterbacka, “A multiplexer based decoder for flash analog-to-digital converters,” in Proc. IEEE TENCON, pp. 250-253, Nov. 2004.
[36] Y. J. Chuang, H. H. Ou, and B. D. Liu, “A Novel Bubble Tolerance Thermometer-to-Binary Decoder for Flash A/D Converter,” in Proc. IEEE Int. Symp. VLSI Design, Automation and Test, pp. 313-316, April 2005.
[37] E. Säll, M. and Vesterbacka, “Thermometer-to-Binary Decoders for Flash Analog-to-Digital Converters,” in 18th European Conf. Circuit Theory and Design, pp. 240-243, Aug. 2007.
[38] B. A. Wandell, Foundations of Vision, Sunderland, MA, Sinauer, 1995.
[39] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing 2nd, Prentice Hall, 2002
[40] R. H. Nixon, S. E. Kemeny, B. Pain, C. O. Staller, and E. R. Fossum, “256×256 CMOS Active Pixel Sensor Camera-on-a-Chip,” IEEE J. Solid- State Circuits, vol. 31, no. 12, pp. 2046-2050, Dec. 1996.
[41] S. K. Mendis, S. E. Kemeny, R. C. Gee, B. Pain, C. O. Staller, Q. Kim, and E. R. Fossum, “CMOS Active Pixel Image Sensors for Highly Integrated Imaging Systems,” IEEE J. Solid-State Circuits, vol. 32, no. 2, pp. 187-197, Feb. 1997.
[42] I. L. Fujimori and C. G. Sodini, “A 256×256 CMOS Differential Passive Pixel Imager with FPN Reduction Techniques,” IEEE J. Solid-State Circuits, vol. 35, pp. 2031-2037, Dec. 2000.
[43] O. Yadid-Pecht and E. Fossum, “Wide Intrascene Dynamic Range CMOS APS Using Dual Sampling,” IEEE Trans. Electronic Devices, vol. 44, pp. 1721-1723, Oct. 1997.
[44] D. Yang, B. Fowler, and A. El. Gamal, “A Nyquist-rate Pixel-level ADC for CMOS Image Sensor,” IEEE J. of Solid-State Circuits, vol. 34, no. 3, pp. 348-356, Mar. 1997.
[45] D. Yang, A. El. Gamal, B. Fowler, and H. Tian, “A 640×512 CMOS Image Sensor with Ultra Wide Dynamic Range Floating-Point Pixel-Level ADC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1821-1834, Dec. 1999.
[46] L. G. McIlrath, “A low-power low-noise ultrawide-dynamic-range CMOS imager with pixel-parallel A/D conversion,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 846-853, May 2001.
[47] S. Kleinfelder, S. H. Lim, X. Q. Liu, and A. El. Gamal, “A 10,000 Frames/s CMOS Digital Sensor,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 2591-2601, Dec. 2001.
[48] J. Doge, G. Schonfelder, G. T. Streil, and A. Konig, “An HDR CMOS Image Sensor with Spiking Pixels, Pixel-level ADC, and linear characteristics,” IEEE Trans. Circuits and System Ⅱ, vol. 49, pp. 155-158, Feb. 2002.
[49] E. Culurciello, R. Etienne-Cummings, and K. Boahen, “A Biomorphic digital image sensor,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 281-294, Feb. 2003.
[50] X. Wang, W. Wang, and R. Hornsey, “A high dynamic range CMOS image sensor with inpixel light-to-frequency conversion,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2988-2992, Dec. 2006.
[51] A. Kitchen, A. Bermak, and A. Bouzerdoum, “PWM Digital Pixel Sensor Based on Asynchronous self-resetting scheme,” IEEE Electron Device Letter, vol. 25, no. 7, pp. 471-473, Jul. 2004.
[52] A. Kitchen, A. Bermak, and A. Bouzerdoum, “A Digital Pixel Sensor Array with Programmable Dynamic Range,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2891-2600, Dec. 2005.
[53] T. Watabe, M. Goto, H. Ohtake, H. Maruyama, M. Abe, K. Tanioka, and N. Egami, “New Signal Readout Method for Ultrahigh-Sensitivity CMOS Image Sensor,” IEEE Trans. Electron Devices, vol. 50, no. 1, pp. 63-69, Jan. 2003.
[54] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, 2nd edition, Prentice Hall, 2002.
[55] S. Pullela, N. Menezes, J. Omar, and L. T. Pillage, “Skew and delay optimization for relizble buffered clock trees,” in Proc. Int. Conf. Computer-Aided Design, pp. 556-562, Nov. 1993.
[56] A. H. Farrahi, C. Chen, A. Srivastava, G. Téllez, and M. Sarrafzadeh, “Activity-Driven Clock Design,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 6, pp. 705-714, Jun. 2001.
[57] Z. Chen, L. Wei, and K. Roy, “Estimation of Standby Leakage Power in CMOS Circuits Considering Accurate Modeling of Transistor Stacks,” in Proc. Int. Symp. Low Power Electronics and Design, pp. 239-144, 1998.
[58] M. C. Johnson, D. Somasekhar, L. –Y. Chiou, and K. Roy, “Leakage control with efficient use of transistor stacks in single threshold CMOS,” IEEE Trans. Very Large Scale Integration Systems, vol. 10, no. 1, pp. 1-5, Feb. 2002