簡易檢索 / 詳目顯示

研究生: 周牧廷
Chou, Moo-Ting
論文名稱: 翼身融合氣動力外型之渦流結構分析
Vortex Structure Analysis of Aerodynamic Blended Wing Body
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 154
中文關鍵詞: 翼根延伸輔助翼渦流渦漩潰散流場可視化粒子影像測速儀
外文關鍵詞: LEX, Strake vortex, Vortex breakdown, Flow Visualization, PIV
相關次數: 點閱:210下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 戰鬥機與民航機在巡航時所需的升力來源不同,主要是因為兩者所需的飛行條件不同,民航機強調的是穩定飛行,而戰機需要的則是高性能的飛行,如高攻角爬升以及空中纏鬥性能等,這樣的條件就需要更好的升力表現,意即機翼上下表面的壓差要更大,因此在戰機上的空氣動力特性主要受翼表面上所產生的渦流結構與分離流影響。然而為了增加機翼表面上的渦流穩定性,在過去許多研究中發展了如渦流產生器(Vortex generator)、翼身融合(Blended wing)或是翼根延伸(Leading edge root extension,LEX、LERX)等裝置來延後表面分離流的位置或是維持機翼表面的渦流結構,以增加在高攻角時的升力表現。
    本實驗將以流場可視化與粒子影像測速儀進行翼根延伸的模型-美國國家航空暨太空總署(NASA)的TP-1803流場觀察,用視流實驗洞悉機翼表面上定性的渦流結構形成與發展,並利用流場的量化資料來釐清渦流結構的特性,以了解主翼前的輔助翼所產生的渦流對於整體的流場影響。
    實驗內容將進行TP-1803模型的視流實驗,將使用點墨法與油膜法觀察翼表面的分離線位置與漸近流線的方向,以及染液注射法來觀察機翼表面上的渦流結構的形成與變化。並佐以粒子影像測速儀量測機翼上的流場速度分布、速度向量以及渦度分布來量化渦流結構中的物理特性,並加以統整以了解不同攻角下渦漩潰散發生的位置,探討渦流間的交互作用。

    Fighters and civil aircraft require different sources of lift during cruise because of the distinct flight requirements. The primary condition of civil aircraft is flight stability, whereas fighter aircraft requires high-performance flight, such as high angle of attack(AOA) climb and dogfight ability, such conditions require better lift performance, which means that the pressure difference between the upper and lower surfaces of the wing is greater. Therefore, the vortex structure and separated flow dominate the aerodynamic characteristics of fighters mainly. In order to increase the vortex stability on the wing surface, researchers developed some devices such as vortex generator, leading edge root extension(LEX, LERX, strake), or blended wing to postpone the separated positions of surface flow or maintain the vortices structures on wing surface, so that increases the lift performance of fighters at high angle of attack.
    In this research, flow visualization and particle image velocimetry (PIV) was conducted to understand the flow field of the LEX model, NASA TP-1803. Observe the formation and development of the vortex structures in flow visualization images to realize the qualitative characteristics and measure velocity on the wing surface to analyze the quantitative data of vortex structures around NASA TP-1803 model, understanding the flow field effects result from the strake vortex.

    目錄 摘要 II Abstract IV 致謝 IX 目錄 X 圖目錄 XIV 表目錄 XXV 符號索引 XXVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 4 1.3.1 三角翼空氣動力學 4 1.3.2 渦漩潰散 9 1.3.3 水槽實驗 17 1.3.4 粒子影像測速儀的發展 18 1.3.5 TP-1803模型空氣動力學 19 1.3.6 渦漩辨識 21 第二章 實驗設備與架設 25 2.1 實驗模型 25 2.2 低速循環水槽 25 2.2.1 水槽尺寸介紹 26 2.2.2 水槽流速校正 26 2.3 視流工具 27 2.4 粒子影像測速儀 28 2.4.1 示蹤粒子 28 2.4.2 雷射光源與光學儀器 30 2.4.3 高速攝影機 32 2.4.4 粒子影像測速儀量測位置 32 2.4.5 PIV計算軟體 34 第三章 研究方法與步驟 35 3.1 視流實驗 35 3.1.1 染液注射法 35 3.1.2 油膜法 36 3.1.3 點墨法 37 3.2 粒子影像測速儀 37 3.2.1 粒子影像測速分析原理 37 3.2.2 粒子影像測速儀校正 40 3.2.3 拍攝參數介紹 40 3.2.4 四分之一定律計算 42 第四章 結果與討論 43 4.1 TP-1803模型流場視流分析 43 4.1.1 攻角0°與5°流場視流分析 43 4.1.2 攻角10°流場視流分析 46 4.1.3 攻角20°流場視流分析 51 4.1.4 攻角30°流場視流分析 61 4.2 TP-1803模型粒子影像測速儀分析 67 4.2.1 攻角10°流場PIV結果 69 4.2.2 攻角20°流場PIV結果 75 4.2.3 攻角30°流場PIV結果 88 第五章 模型幾何對流場之影響 102 5.1 模型幾何參數 102 5.2 輔助翼對於流場影響 103 5.2.1 攻角10°流場視流分析 104 5.2.2 攻角15°流場視流分析 107 5.3 機身對於流場的影響 110 5.3.1 攻角10°流場視流分析 111 5.3.2 攻角15°流場視流分析 118 5.3.3 攻角20°流場視流分析 126 5.3.4 攻角25°流場視流分析 133 5.3.5 攻角30°流場視流分析 140 第六章 結論與未來建議 150 6.1 結論 150 6.2 未來建議 151 參考文獻 152

    參考文獻
    [1] High Angle of Attack Aerodynamics, AGARD/VKI Lecture Series No. 121, 1982.
    [2] G. E. Erickson, “Water Tunnel Stu dies of Leading-Edge Vortices,” Journal of Aircraft, Vol. 19, No. 6, pp.442-448, 1982.
    [3] J. E. Lamar, and N. T. Frink, “Experimental and analytical study of the longitudinal aerodynamic characteristics of analytically and empirically designed strake-wing configurations at subcritical speeds,” NASA-TP-1803, 1981.
    [4] J. M. Luckring, “Aerodynamics of Strake-Wing Interactions,” Journal of Aircraft, Vol. 16, No.11, pp. 756-762, 1979.
    [5] B. R. Cobleigh, John Del Frate, “Water Tunnel Flow Visualization Study of a 4.4% Scale X-31 Forebody,” NASA-TM-104276, 1994.
    [6] J. D. Anderson Jr, Fundamentals of aerodynamics: Tata McGraw-Hill Education, 2010.
    [7] E. C. Polhamus, “A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction analogy,” NASA-TN-D-3767, 1966.
    [8] M. Trinder, and M. Jabbal, “Development of a Smoke Visualisation System for Wind Tunnel Laboratory Experiments,” International Journal of Mechanical Engineering Education, Vol. 41, pp.27-43, 2013.
    [9] 張瑞乾, “穩態與非穩態三角翼之渦流研究,” 航空太空工程研究所, 國立成功大學, 台南市, 1991.
    [10] T. Durhasan, and İ. Karasu, “Dye visualization over double delta wing with various kink angles,” Journal of Visualization, Vol. 22, No. 4, pp. 669-681, 2019.
    [11] P. Earnshaw, An experimental investigation of the structure of a leading-edge vortex: HM Stationery Office, 1961.
    [12] R. C. Nelson, and A. Pelletier, “The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers,” Progress in Aerospace Sciences, vol. 39, no. 2-3, pp. 185-248, 2003.
    [13] M. Hall, “A theory for the core of a leading-edge vortex,” Journal of Fluid Mechanics, vol. 11, no. 2, pp. 209-228, 1961.
    [14] J.-Z. Wu, H.-Y. Ma, and M.-D. Zhou, Vorticity and vortex dynamics: Springer Science & Business Media, 2007.
    [15] B. J. Elle, “On the Breakdown at High Incidences of the Leading Edge Vortices on Delta Wings,” Journal of the Royal Aeronautical Society, Vol. 64, pp. 491-493, 1960.
    [16] T. B. Benjamin, “Theory of the vortex breakdown phenomenon,” Journal of Fluid Mechanics, Vol. 14, No. 4, pp. 593-629, 1962.
    [17] H. B. Squire, “Analysis of the 'Vortex Breakdown' Phenomenon: Part I,” Imperial College of Science and Technology, Aeronautics Department, 1960.
    [18] T. Sarpkaya, “Vortex Breakdown in Swirling Conical Flows,” AIAA Journal, Vol. 9, No. 9, pp. 1792-1799, 1971.
    [19] V. D. Milton, “An album of fluid Motion,” The Parabolic Press, Stanford, California, United states of America, 1988.
    [20] S. Leibovich, “Vortex stability and breakdown - Survey and extension,” AIAA Journal, vol. 22, no. 9, pp. 1192-1206, 1984.
    [21] A. K. Garg, and S. Leibovich, “Spectral characteristics of vortex breakdown flowfields,” Physics of Fluids, vol. 22, pp. 2053, 1979.
    [22] S. Leibovich, “The Structure of Vortex Breakdown,” Annual Review of Fluid Mechanics, vol. 10, no. 1, pp. 221-246, 1978.
    [23] M. Escudier, “Vortex breakdown: Observations and explanations,” Progress in Aerospace Sciences, Vol. 25, No. 2, pp. 189-229, 1988.
    [24] T. Sarpkaya, “Effect of the Adverse Pressure Gradient on Vortex Breakdown,” AIAA Journal, Vol. 12, No. 5, pp. 602-607, 1974.
    [25] M. G. Hall, “Vortex Breakdown,” Annual Review of Fluid Mechanics, Vol. 4, No. 1, pp. 195-218, 1972.
    [26] J. M. Delery, “Aspects of vortex breakdown,” Progress in Aerospace Sciences, Vol. 30, No. 1, pp. 1-59, 1994.
    [27] A. Kumar, “On the Structure of Vortex Breakdown on a Delta Wing,” Proceedings: Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1968, pp. 89-110, 1998.
    [28] L. Prandtl, “Motion of fluids with very little viscosity,” NACA-TM-452, 1928.
    [29] M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans, “Particle image velocimetry: a practical guide,” Springer, 2018.
    [30] G. E. Erickson, “Water Tunnel Flow Visualization: Insight into Complex Three-Dimensional Flow fields,” Journal of Aircraft, Vol. 17, No. 9, 1980.
    [31] C. Willert, and J. Kompenhans, PIV Analysis of Ludwig Prandtl's Historic Flow Visualization Films, 63rd Annual Meeting of the APS Division of Fluid Dynamics (DFD), 2010.
    [32] J. E. Lamar, “Analysis and Design of Strake-Wing Configurations,” Journal of Aircraft, Vol. 17, No. 1, pp. 20-27, 1980.
    [33] J. M. Luckring, “Flow visualization studies of a general research fighter model employing a strake-wing concept at subsonic speeds,” NASA-TM-80057, 1979.
    [34] B. A. Robinson, R. M. Barnett, and S. Agrawal, “Simple numerical criterion for vortex breakdown,” AIAA Journal, Vol. 32, No. 1, pp. 116-122, 1994.
    [35] M. S. Chong, A. E. Perry, and B. J. Cantwell, “A general classification of three‐dimensional flow fields,” Physics of Fluids A: Fluid Dynamics, Vol. 2, No. 5, pp. 765-777, 1990.
    [36] J. Jeong, and F. Hussain, “On the identification of a vortex,” Journal of Fluid Mechanics, Vol. 285, pp. 69-94, 1995.
    [37] Q. Chen, Q. Zhong, M. Qi, and X. Wang, “Comparison of vortex identification criteria for planar velocity fields in wall turbulence,” Physics of Fluids, Vol. 27, No. 8, pp. 085101, 2015.
    [38] 江皇廷, “應用流場可視化及粒子影像測速技術剖析動態失速流場,” 航空太空工程學系, 國立成功大學, 台南市, 2015.
    [39] M. M. Zdravkovich, “Flow around circular cylinders,” Oxford University Press, Vol. 1, pp. 1-18, 1997.
    [40] M. Jahanmiri, Particle image velocimetry: Fundamentals and its applications, Chalmers University of Technology, 2011.
    [41] R. Keane, and R. Adrian, “Theory of cross-correlation analysis of PIV images,” Applied Scientific Research, Vol. 49, pp. 191-215, 1992.
    [42] D. Thompson, “A Visualisation Study of the Vortex Flow Around Double-Delta Wings,” Aeronautical Research Labs Melbourne (Australia), 1985.
    [43] 劉文浩, “50°後掠角三角翼三維流場及噴流後流場觀察,” 航空太空工程研究所, 國立成功大學, 台南市, 1992.
    [44] W. Wrigley, W. M. Hollister, and W. G. Denhard, Gyroscopic theory, design, and instrumentation: The MIT press, 1969.
    [45] J. M. Luckring, “The discovery and prediction of vortex flow aerodynamics,” The Aeronautical Journal, Vol. 123, pp. 729-804, 2019.
    [46] 蔡雅涵, “使用視流方法與粒子影像測速儀研究高攻角空氣動力流場現象,” 航空太空工程學系, 國立成功大學, 台南市, 2019.
    [47] N. Verhaagen, L. Jenkins, S. Kern, and A. Washburn, "A study of the vortex flow over a 76/40-deg double-delta wing," 33rd Aerospace Sciences Meeting and Exhibit.
    [48] J. Ekaterinaris, R. Coutley, L. B. Schiff, and M. Platzer, “Numerical investigation of high incidence flow over a double-delta wing,” Journal of aircraft, Vol. 32, No. 3, pp. 457-463, 1995.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE