簡易檢索 / 詳目顯示

研究生: 朱威儒
Chu, Wei-Ju
論文名稱: 適用於客製化自駕車之以路徑跟蹤為導向的模擬器原型與驗證
Prototype and Verification of Path-Tracking-Oriented Simulator for Customized Autonomous Vehicle
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 118
中文關鍵詞: 觀測/卡爾曼濾波器系統鑑別法模擬器改良版模型預測控制輸入限制監督式控制
外文關鍵詞: Observer/Kalman filter identification (OKID), simulator, modified model predictive control, input constrained, supervisory control structure
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對以路徑跟蹤為導向的客製化自駕車,本論文提出了一個驗證的模擬器原型,所提方法改進並驗證了高度非線性自動駕駛汽車模擬器原型的建立,其中,利用Vehicle Dynamics-MATLAB和Simulink-MathWorks 2018a以及觀測/卡爾曼濾波系統識別(OKID)法,為高度非線性的客製化自駕車輛控制系統建立了基於多模式的自駕車模擬器原型,利用電腦模擬,以展示自駕車模擬器原型在相關環境中的優越性。相關技術包括:一、基於觀測/卡爾曼濾波系統識別法的系統模型─適用於高度非線性的系統,例如車輛動態系統,以符合各種實際情況;二、適用於自駕車的改良版監督式控制結構,三、改良版的監督式控制體系結構─用於優化基於多模型結構的切換式控制系統,在各種情況下切換機制的平順度;四,在技術就緒指數第6級(Technology Readiness Level 6)的概念下,驗證以路徑跟蹤為導向的客製化自駕車模擬器原型。

    A new prototype with verification of path-tracking-oriented simulators for customized autonomous vehicle has been proposed in this thesis. This thesis proposes improvements to the customized modelling of highly nonlinear autonomous vehicles. Therein, use Vehicle Dynamics-MATLAB & Simulink-MathWorks 2018a and the observation/Kalman filter system identification (OKID) method to establish a customized multi-mode-based prototype for the highly nonlinear vehicle control system, then use the created model to demonstrate superiority of the prototype in a relevant environment. The techniques contains (i) the OKID method-based mathematical modellings for the highly non-linear systems such as the vehicle dynamic system to fit various scenarios for the real situation, (ii) the multi-model-based modified model predictive control (MPC) with input constraints, (iii) an improved supervisory control architecture to optimize the switching mechanism for the multi-model-based control architecture, (iv) a verification of the path-tracking-oriented simulator for the customized autonomous vehicle in a relevant environment under the concept of Level 6 of technology readiness index.

    摘要 I Abstract II Acknowledgement III List of Contents IV List of Figures VI List of Tables XII Chapter 1 1 Chapter 2 Mathematical Modellings of Autonomous Vehicles 4 2.1. Observer/Kalman filter identification 5 2.1.1. Basic observer formulation 5 2.1.1.1. Markov parameter without observer system 5 2.1.1.2. Markov parameter with observer system 7 2.1.2. Computation of Markov parameters and observer gain 9 2.1.2.1. Markov parameters of system 9 2.1.2.2. Observer gain Markov parameters 10 2.1.3. Eigensystem realization algorithm 10 2.2. Process of OKID 12 2.2.1 Computing steps of OKID 12 2.3. Mathematical modeling for vehicle 13 2.3.1. Vehicle dynamic system 13 2.3.2. System identification for vehicle dynamic system 14 2.3.3. Multiple mathematical models of vehicle dynamics 18 2.3.4. Comments on the identified models 31 Chapter 3 Path-Tracking Oriented Simulator and Control Techniques 40 3.1. Path-tracking-oriented simulator 41 3.2. Input-constrained model predictive control 44 3.2.1. Modified observer-based model predictive control 44 3.2.2. Hildreth’s quadratic programming 46 3.3. Vehicle dynamic system simulator of different architectures 48 3.3.1. Main subsystem of path-tracking simulator 48 Chapter 4 Model Decision and Smooth Model Switching 51 4.1. Supervisory model decision 52 4.2. A smooth switching mechanism 56 Chapter 5 Verification 60 5.1. Real paths transferred from Google Map 65 5.2. Fictitious paths obtained from vehicle dynamics blockset-MATLAB 90 Chapter 6 Conclusion 112 Reference 115

    [1] Crolla, D., Foster, D. E., Kobayashi, T., and Vaughan, N. D. Encyclopedia of automotive engineering, vol. 4, part 5 (Chassis Systems) and part 6 (Electrical and Electronic Systems), Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2015.
    [2] Ebrahimzadeh, F., Tsai, J. S. H.,. Chung, M. C., Liao, Y. T., Guo, S. M., Shieh, L. S., and Wang, L., “A generalized optimal linear quadratic tracker with universal applications-Part 2: Discrete-time systems,” International Journal of Systems Science, vol. 48, no. 2, pp. 397-416, 2017.
    [3] Gillespie, T. D. Fundamentals of vehicle dynamics, Warrendale, PA: Society of Automotive Engineers, 1992.
    [4] Guo, S. M., Shieh, L. S., Chen, G. R., and Lin, C. F., “Effective chaotic orbit tracker: A prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
    [5] Gelbal, Ş. Y., Tamilarasan, S., Cantaş, M. R., Güvenç, L., and Aksun-Güvenç, B., “A connected and autonomous vehicle hardware-in-the-loop simulator for developing automated driving algorithms,” 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3397-3402, 2017.
    [6] Hildreth, C., “A quadratic programming procedure,” Naval Research Logistics Quarterly, vol. 4, pp. 79-85, 1957.
    [7] Highway Tire Committee. Stepwise coastdown methodology for measuring tire rolling resistance. Standard J2452_199906, Warrendale, PA: SAE International, June 1999.
    [8] Juang, J. N., Applied system identification, Englewood Cliffs, NJ: Prentice-Hall, 1994.
    [9] Kao, C., Path-Tracking-Oriented Simulators for Customized Autonomous Vehicles, Department of Electrical Engineering, N.C.K.U., Tainan, Taiwan, R.O.C., Master Thesis, July 2019.
    [10] Kissai, M., Monsuez, B., and Tapus, A., “Current and future architectures for integrated vehicle dynamics control,” 12th National Conference on Software and Hardware Architectures for Robots Control (SHARC2017), June 2017.
    [11] Liu, B. L., Prototype and Verification of Advanced Control Technique for Autonomous Vehicles, Department of Electrical Engineering, N.C.K.U., Tainan, Taiwan, R.O.C., Master Thesis, July 2020.
    [12] Li, Z. K., A Trajectory Generator for Autonomous Vehicle Control, Department of Electrical Engineering, N.C.K.U., Tainan, Taiwan, R.O.C., Master Thesis, July 2020.
    [13] MATLAB, MathWorks, Inc., Vehicle Dynamics Blockset™ User's Guide, “https://ch.mathworks.com/help/pdf_doc/vdynblks/vdynblks_ug.pdf”, March 2019.
    [14] Nilsson, P., Laine, L., and Jacobson, B., “A simulator comparing characteristics of manual and automated driving during lane changes of long combination vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 9, pp. 2514-2524, 2017.
    [15] Pacejka, H. B. Tire and vehicle dynamics. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
    [16] Sulkowski, T., Bugiel, P. and Izydorczyk, J., “In search of the ultimate autonomous driving simulator,” 2018 International Conference on Signals and Electronic Systems (ICSES), pp. 252-256, 2018.
    [17] “Technology Readiness Level Definitions” (https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf) (PDF), nasa.gov. Retrieved 6 September 2019. This article incorporates text from this source, which is in the public domain.
    [18] Tsai, J. S. H., Wang, H. H., Guo, S. M., Shieh, L. S., and Canelon, J. I., “A case study on the universal compensation-improvement mechanism: A robust PID filter-shaped optimal PI tracker for systems with/without disturbances,” Journal of the Franklin Institute, vol. 355, pp. 3583-3618, April 2018.
    [19] Tsai, J. S. H., Chang, C. Y., Chen, Y. F., Guo, S. M., Shieh, L. S., and Canelon, J. I., “A modified functional observer-based EID estimator for unknown sampled-data singular systems,” International Journal of Systems Science, Published online: https://doi.org/10.1080/ 00207721.2019.1645919.
    [20] Tsai, J. S. H., Kuo, L. Y., Guo, S. M., Shieh, L. S., and Canelon, J. I., “Application of the observer/Kalman filter identification method to unknown time-delay disturbed systems and the associated optimal digital tracker design,” International Journal of Systems Science, Published online DOI: 10.1080/00207721.2019.1691282, Nov. 4, 2019.
    [21] Tsai, J. S. H., Yu, T. H., Su, T. J., Guo, S. M., Shieh, L. S., and Canelon, J. I., “A novel on-line OCID method and its application to input-constrained active fault-tolerant tracker design for unknown nonlinear systems,” International Journal of Systems Science, vol. 50, no. 14, pp. 2632-2662.
    [22] Technical Committee, Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary, ISO 8855:2011, Geneva, Switzerland: International Organization for Standardization, 2011.
    [23] Vehicle Dynamics Standards Committee, Vehicle Dynamics Terminology, SAE J670, Warrendale, PA: Society of Automotive Engineers, 2008.
    [24] Wang, C. H., Advanced Control Technique for Autonomous Vehicles, Department of Electrical Engineering, N.C.K.U., Tainan, Taiwan, R.O.C., Master Thesis, July 2019.
    [25] Wang, L. P., Model Predictive Control System Design and Implementation using MATLAB, London: Springer, 2009.
    [26] Wu, C. Y., Tsai, J. S. H., Guo, S. M., Shieh, L. S., Canelon, J. I., Ebrahimzadeh, F., and Wang, L., “A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 352, pp. 1119-1151, 2015.
    [27] Yang, Y., Yang, G. H. and Soh, Y. C., “Reliable control of discrete-time systems with actuator failure,” IEEE Proceedings-Control Theory and Applications, vol. 147, no 4, pp. 428-432, 2000.

    下載圖示 校內:2025-08-11公開
    校外:2025-08-11公開
    QR CODE