簡易檢索 / 詳目顯示

研究生: 王盈惠
Wang, Ying-Hui
論文名稱: 基於方向場理論與NURBS曲線之速度場規劃於循跡運動之研究
A Study on Velocity Field Planning for Contour Following Tasks based on Direction Field Theory and NURBS Curve
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 77
中文關鍵詞: 速度場NURBS參數式曲線NURBS曲線之速度場方向場理論
外文關鍵詞: NURBS curve, direction field theory, velocity field
相關次數: 點閱:89下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多軸循跡運動控制之主要目的為確保系統之實際運動軌跡能維持在規劃的命令路徑上。傳統作法大都是設計追蹤控制器(tracking controller)儘量減少系統各軸之實際運動路徑與各軸命令路徑間之追蹤誤差。然而若任何一軸有顯著之追蹤誤差,則極有可能系統之實際運動軌跡與規劃路徑間之輪廓誤差會超過容許的範圍。事實上在多軸循跡運動問題中,輪廓誤差遠比追蹤誤差重要。有鑑於此,近年來有不少學者致力於研究以建構速度場的方式來規劃循跡運動的命令路徑。由於速度場僅為位置函數,與時間無關,因此在控制器的設計上可著重在減少輪廓誤差而非追蹤誤差。在這些研究中,速度場由速度向量所組成,而速度向量則是由距離向量與其相互垂直之切線向量構成。這樣的作法對於直線或圓形循跡運動問題而言,因距離向量的計算十分容易,所以可順利建構出適當之速度場。但對於自由曲線之循跡運動問題來說,因其距離向量無法即時且準確地被計算出來,相關文獻並未提及如何規劃其速度場。為解決此一問題,本論文應用方向場理論,以格子點的方式來建構自由曲線循跡運動問題中之速度場。模擬結果顯示本論文所提出之方法確實可行。

    The aim of multi-axis contour following control is to ensure that the system’s motion trajectory maintain on the desired contour. Conventional approaches to this control problem are to design tracking controllers for each axis so that the tracking error between the position output and the motion command for each axis is as small as possible. However, if there exists significant tracking error in any axis, it is likely that the contour error between the motion trajectory and the desired contour will exceed the tolerable limit. In fact, the contour error is more important than the tracking error in contour following tasks. Consequently, a number of studies have focused on encoding the desired contour by constructing the velocity field. Since the constructed velocity field is a function of position only (independent of time), the motion controller design for contour following tasks can emphasize on reducing contour error rather than tracking error. However, in these studies, the velocity field is composed of a distance vector and a tangent vector that is perpendicular to the distance vector. For line or circle contour following tasks, it is easy to find the corresponding distance vector, whereas it is not the case for the free form contour following task. This fact may explain why those previous studies did not explore the case of free form contour following task. In order to cope with this problem, this thesis exploits the idea of direction filed theory and constructs the velocity field at pre-selected grid points. Simulation results demonstrate the proposed approach indeed feasible.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧與研究動機 2 1-3本文架構 4 第二章參數式曲線之速度場規劃 5 2-1 速度場簡介 5 2-2 二維空間之速度場概述 6 2-2-1 基於隱函式描述之圓形曲線的速度場規劃 7 2-2-2 以NURBS型式表示之自由曲線速度場規劃 10 2-3基於格子點之NURBS曲線的速度場規劃 11 2-3-1 方向場理論之簡介 11 2-3-2 基於方向場理論之自由曲線的速度場規劃 14 2-4 速度場為連續函數之證明 17 第三章 NURBS參數式曲線 22 3-1 NURBS參數式曲線之簡介 22 3-1-1 NURBS的數學模型 23 3-2 NURBS曲線描述之模擬 26 第四章 基於速度場的循跡運動之模擬結果 29 4-1曲線之速度場模擬 29 4-1-1隱函式描述之圓形的速度場規劃 29 4-1-2 NURBS曲線描述之速度場規劃 30 4-1-3 小結 37 4-2基於速度場之命令軌跡模擬 37 4-2-1隱函式描述之圓形速度場的命令軌跡模擬 38 4-2-2 NURBS曲線之速度場的命令軌跡模擬 41 4-2-3 小結 64 4-3 基於速度場之循跡運動模擬 66 4-3-1 NURBS曲線之速度場的循跡運動模擬 66 4-3-2 小結 71 第五章 結論與建議 72 附錄 73 參考文獻 74

    [1] P. Y. Li and R. Horowitz, “Passive velocity field control of mechanical manipulators,” in Proceedings of IEEE International Conference on Robotics and Automation, 1995, vol. 3, pp. 2764–2770.
    [2] P. Y. Li and R. Horowitz, “Control of smart exercise machines-part I: problem formulation and nonadaptive control,” IEEE/ASME Transactions on Mechatronics, vol. 2, no. 4, pp. 237–247, 1997.
    [3] P. Y. Li and R. Horowitz, “Control of smart exercise machines-part II: self-optimizing control,” IEEE/ASME Transactions on Mechatronics, vol. 2, no. 4, pp. 248–258, 1997.
    [4] P. Y. Li, “Adaptive Passive velocity field control,” in Proceedings of the American Control Conference, 1999, vol. 2, pp. 774–779.
    [5] M. Yamakita, K. Suzuki, X.-Z. Zheng, M. Katayama, and K. Ito, “An extension of passive velocity field control to cooperative multiple manipulator systems,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997, vol. 1, pp. 11 – 16.
    [6] M. Yamakita, F. Asano and K. Furuta, “Passive velocity field control of biped walking robot,” in Proceedings of IEEE International Conference on Robotics and Automation, 2000, vol. 3, pp. 3057-3062.
    [7] Y. Saitoh, Z. Luo and K. Watanabe, “Environmental adaptive PVFC for a robot manipulator,” in Proceedings of the 41st SICE Annual Conference, 2002, vol. 1, pp. 228-229.
    [8] I. Cervantes, R. Kelly, J. Alvarez-Ramirez, and J. Moreno, “A robust velocity field control,” IEEE Transaction on Control Systems Technology, vol. 10, no. 6, pp. 888-894, 2002.
    [9] J. Moreno and R. Kelly, “On manipulator control via velocity fields,” in Proceedings of the 15th IFAC World Congress, 2002.
    [10]J. Moreno-Valenzuela and R. Kelly, “A hierarchical approach to manipulator velocity field control considering dynamic friction compensation,” Journal of Dynamic Systems Measurement and Control, vol. 128, pp. 670-674, 2006.
    [11]D. Lee and P. Y. Li, “Passive bilateral feedforward control of linear  dynamically similar teleoperated manipulators,” IEEE Transactions on Robotics and Automation, vol. 19, no. 3, pp. 443–456, 2003.
    [12]D. Lee and P. Y. Li, “Passive bilateral control and tool dynamics   rendering for nonlinear mechanical teleoperators,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 936–951, 2005.
    [13]R. K. Nagle and E. B. Saff, Fundamentals of Differential Equations and Boundary Value Problems, Addison-Wesley, 1993.
    [14]E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Wiley,
    1966.
    [15]P. V. O’Neil, Advanced Engineering Mathematics, Thomson Learning, 2003.
    [16]J. F. Epperson, An Introduction to Numerical Methods and Analysis, John
    Wiley & Son, Inc., 2002.
    [17]W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and
    Boundary Value Problems, John Wiley & Son, Inc., 1992.
    [18]G. B. Gustafson and C. H. Wilcox, Analytical and Computational Methods of Advanced Engineering Mathematics, Springer, 1998.
    [19]P. Y. Li and R. Horowitz, “Passive velocity field control of mechanical manipulators,” IEEE Transactions on Robotics and Automation, vol. 15, no. 4, 1999.
    [20]徐哲東, 新數學名詞辭典, 名山出版社, 1984.
    [21]M.Y. Cheng, M.C. Tsai, and J.C. Kuo, “Real-time NURBS command generators for CNC servo controllers,” International Journal of Machine Tools and Manufacture, vol. 42, no. 7, pp. 801-813, 2002.
    [22]郭洲成, CNC 伺服控制器之NURBS即時插值器設計與實現, 碩士論文, 國立成功大學機械工程學系, 2000.
    [23]C. H. Edwards and D. E. Penney, Differential Equations & Linear Algebra, Pearson Prentice Hall, 2005.
    [24]D. M. Tsay, and Jr. C. O. Huey, “Application of rational B-splines to the synthesis of cam-follower motion programs,” Journal of Mechanical Design, vol. 115, no. 3, pp. 621-626, 1993.
    [25]D. M. Tsay and B. J. Lin, “Improving the geometry design of cylindrical cams using nonparametric rational B-splines,” Computer-Aided Design, vol. 28, no. 1, pp.5-15, 1996.
    [26]L. Piegl, “On NURBS: A survey,” IEEE Computer Graphics and Applications, vol. 11, no. 1, pp. 55-71, 1991.
    [27]V. F. Dem’yanov and V. N. Malozemov, Introduction to Minimax, John Wiley & Son, Inc., 1974.
    [28]R, G. Bartle, The Elements of Real Analysis, John Wiley & Son, Inc., 1976.

    下載圖示 校內:2014-08-27公開
    校外:2014-08-27公開
    QR CODE