簡易檢索 / 詳目顯示

研究生: 鄭文宜
Cheng, Wen-Yi
論文名稱: 利用太陽熱能使建築夏季通風降溫和冬季取暖升溫之研究
The Study of Building Cooling in Summer and Heating in Winter Using Solar Thermal Energy
指導教授: 陳世雄
Chen, Shih-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 166
中文關鍵詞: 太陽熱能熱管通風取暖
外文關鍵詞: solar thermal energy, heat pipe, ventilation, heating
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討以實驗方式將太陽熱能做為驅動力使建築物達到夏天通風降溫和冬天取暖升溫的效果。在夏季部份其工作方式是以吸熱板吸收太陽熱能後,利用熱管快速導熱的特性將熱傳遞至散熱鰭片,鰭片升溫後加熱週遭空氣並使之產生熱氣自然對流,進而達到建築物通風降溫的效果,而在冬季部份則是建造集熱裝置將其以上的熱氣收集起來做為暖氣源導入室內,進而達到讓建築物取暖升溫。實驗中建有一溫室,內分為兩室,一邊有裝太陽能吸熱裝置(A室)一邊則無(B室)做為比較。實驗結果發現,在夏季時段皆有不錯的通風降溫效果,有裝吸熱裝置之室內溫度低於未裝裝置且差異最高可達6℃,通風能力也達國際標準,而在冬季建築升溫也有相當之成果,有裝取暖裝置(A室)之室內溫度比未裝取暖裝置(B室)可提高約4℃。利用此太陽熱能就可達夏季降溫和冬季升溫,除了靈活使用外,也可達到減少能耗之目標。

    Experimental work was performed to study the cooling and heating effect of a building using solar theamal energy as the driving force. In the summer, the heat-absorbing panels absorb solar radiation and transport the heat to heat pipes. Then, the heat pipes transfer the heat to the cooling fins with characteristics of fast thermal conductivity. Building ventilation and cooling was achieved by the buoyancy effect of air when the air heated by fins. In the winter, the heated air are carried to building by collector device, so that building are heated up. A building with two identical compartments, Room A and Room B, was designed as the platform for measurement. The solar ventilation device was installed in Room A, and Room B was not installed for comparison. The experiment results showed that the Room A has good ventilation and cooling effect in summer season. Room A could achieve with up to 6 °C lower interior temperature than that of Room B, and the capacity of the ventilation can be reached to international standards. The building heating in winter time also showed good results. Room A temperature was higher than Room B by about 4 °C. Using solar thermal energy, the system can produce the effect of cooling in summer and heating in winter. It is not only flexible to use but also can achieve the goal of reducing energy consumption.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 XVII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 內容概要 6 第二章 實驗原理 7 2-1 基本運作原理 8 2-2 太陽能通風器 9 2-2-1 吸熱區 9 2-2-2 熱管 9 2-2-3 散熱區 10 2-3 實驗相關計算 11 2-3-1 夏季通風降溫實驗 11 2-3-2 冬季取暖升溫實驗 12 第三章 實驗設備與量測 13 3-1 戶外溫室與太陽能通風系統/太陽能取暖系統模型 13 3-1-1 溫室 13 3-1-2 太陽能通風系統 14 3-1-2 太陽能取暖系統 15 3-2 實驗設備 16 3-3 實驗流程 18 3-3-1夏季通風降溫 18 3-3-2 冬季取暖升溫 19 第四章 結果與討論 20 4-1 夏季溫室通風之探討 20 4-1-1 2012年7月12日之實驗結果 20 4-1-2 2012年9月12日之實驗結果 23 4-1-3 2012年10月3日之實驗結果 26 4-1-4 通風換氣效能計算 28 4-2 冬季溫室取暖之探討 29 4-2-1 2013年1月6日之實驗結果 29 4-2-2 2013年1月23日之實驗結果 34 4-2-3 2013年2月21日之實驗結果 36 4-2-4加熱效能計算 39 第五章 結論 41 5-1 綜合討論 41 5-2 實驗誤差 44 5-3 未來工作及建議 45 參考文獻 46

    1. Chan, H, Y., Riffat, S, B. and Zhu, Jie., “Review of passive solar heating and cooling technologies,” Renewable and Sustainable Energy Reviews, Vol. 14, pp. 781-789, 2010.
    2. Richman, R. C. and Pressnail, K. D., “ A more sustainable curtain wall system: analytical modeling of the solar dynamic buffer zone (SDBZ) curtain wall,” Building and Environment, Vol. 40, pp. 1-10, 2009.
    3. Nwachukwu, N. P. and Okonkwo, W. I., “Effect of an absorptive coating on solar energystorage in a Trombe wall system,” Energy and Buildings, Vol. 40, pp. 371-374, 2008.
    4. Jie, J., Hua, Y., Gang, P., Bin, J. and Wei, H., “Study of PV-Trombe wall assisted with DC fan,” Building and Environment, Vol. 42, pp. 3529-3539, 2007.
    5. Chen, S. H., Chen, J. H. and Ferdows, M., “Numerical investigation of energy conversion efficiency of the solar chimney,” Chinese society of mechanical engineers (CSME) 25th conference, Taiwan, ROC: CSME; 2008.
    6. Harris, D. J. and Helwig, N., “Solar chimney and building ventilation,” Applied Energy, Vol. 84, pp. 135-146, 2007.
    7. Miyazaki, T., Akisawa, A. and Kashiwagi, T., “The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate,” Renewable Energy, Vol. 31, pp. 987-1010, 2006.
    8. Ong, K. S. and Chow, C. C., “Performance of a solar chimney,” Solar Energy, Vol. 74, pp. 1-17, 2003.
    9. Luis, J., “A new design of roof-integrated water solar collector for domestic heating and cooling,” Solar Energy, Vol. 82, pp. 481-492, 2008.
    10. Dimoudi, A., Lykoudis, S. and Androutsopoulos, A., “Thermal performance of an innovative roof component,” Renewable Energy, Vol. 31, pp. 2257-2271, 2006.
    11. Maria, C., Munari, P. and Christian, R., “Towards an improved architectural quality of building integrated solar thermal systems (BIST),” Solar Energy, Vol. 81, pp. 1104-1116, 2007.
    12. Mathur, J. and Anupma, S. M., “Summer-performance of inclined roof solar chimney for natural ventilation,” Energy and Buildings, Vol. 38, pp. 1156-1163, 2006.
    13. Pasquay, T., “Natural ventilation in high-rise buildings with double facades, saving or waste of energy,” Energy and Buildings, Vol. 36, pp. 391-389, 2004.
    14. Davies, P. A., “A solar cooling system for greenhouse food production in hot climates,” Solar Energy, Vol. 79, pp. 661-668, 2005.
    15. Esen, H., “Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates,” Building and Environment , Vol. 43, pp. 1046-1054, 2008.
    16. Zhai, X. Q., Dai, Y. J. and Wang, R. Z., “Experimental investigation on air heating and natural ventilation of a solar air collector,” Energy and Buildings, Vol. 37, pp. 373-381, 2005.
    17. Zhao, D. L., Li, Y., Dai, Y. J. and Wang, R. Z., “Optimal study of a solar air heating system with pebble bed energy storage,” Energy Conversion and Management, Vol. 52, pp. 2392-2400, 2011.
    18. Elenbass, W., “Heat dissipation of parallel plates by free convection,” Physica, Vol. 9, pp. 1-28, 1942.
    19. Grover, G. M., Cotter, T. P. and Erickson, G. F., “Structures of very high thermal conductance,” Journal of Applied Physics, American Institute of Physics, Vol. 35, pp. 1990-1991, 1964.
    20. Kumar, R. and Rosen, M. A., “A critical review of photovoltaic–thermal solar collectors for air heating,” Applied Energy, Vol. 88, pp. 3603-3614, 2011.
    21. Naphon, P., “On the performance and entropy generation of the double-pass solar air heater with longitudinal fins,” Renewable Energy, Vol. 30, pp. 1345-1357, 2005.
    22. Burmeister, L. C., “Convective Heat Transfer,” 2nd edtion, J. Wiley, & Son, Inc, 1993.
    23. 陳維新, 能源概論, 高立圖書有限公司, 2009.
    24. 陳俊宏, 太陽能煙囪能量轉換效能改善之探討, 國立成功大學航空太空研究所碩士論文, 7月2008.
    25. 國立成功大學綠色魔法學校網站http://www.msgt.org.tw
    26. 呂金翰, 利用太陽熱能達到通風效果的研究, 國立成功大學航空太空研究所碩士論文,7月 2007.
    27. 林宥任, 太陽能通風設備的熱交換鰭片參數化研究, 國立成功大學航空太空研究所碩士論文, 1月 2009.
    28. 劉智仁, 蒸汽腔室於電子冷卻之應用, 國立成功大學航空太空研究所碩士論文, 7月2004.
    29. 依日光, 熱管技術理論實務, 復漢出版社有限公司, 1999.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE