簡易檢索 / 詳目顯示

研究生: 于中銘
Yu, Chung-Ming
論文名稱: 無外掛電容式低壓降線性穩壓器與低功耗參考電壓產生器設計
Design of an External Capacitor-Less Low Dropout Regulator and a Low-Power Voltage Reference Circuit
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 108
中文關鍵詞: 呼吸感測系統懸臂樑低壓降線性穩壓器次臨界CMOS參考電壓產生器
外文關鍵詞: Respiration detection system, Cantilever, LDO, Subthreshold CMOS voltage reference
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了使呼吸感測系統具可攜性,並實現鋰電池供電,輸入電壓範圍3.4 V–4.2 V,本論文將線性穩壓器、微機電感測器、讀取電路與振幅數位轉換電路整合在一個晶片內,並將10位元數位輸出透過DAQ讀入電腦,由LabVIEW運算且即時顯示呼氣波型、振幅和頻率等資訊,本晶片實現無外部電容與分壓電阻之低壓降線性穩壓器,產生穩定電壓3.3 V給負載使用。本系統內建二組微懸臂樑感測器,一組更改架構,以增加其靈敏度,另一組沿用上一版本,以上是第一顆晶片的電路。第二顆晶片為一個低電壓與低功耗之參考電壓產生器,設計給低壓啟動或獵能升壓型轉換器使用。
    第一顆晶片採用台積電 (TSMC) 0.35 μm CMOS/MEMS 2P4M 3.3 V 混合訊號製程加上微機電後製程製作,以48 S/B 封裝,尺寸為1.910×2.369 mm2,含一組感測器且供應電壓為3.6 V的系統功耗為3.15 mW。第二顆晶片採用台積電 0.18 μm 1P6M 混合訊號製程,以18 S/B 封裝,尺寸為0.473×0.314 mm2,隨著電源範圍0.4–1.8 V,總功耗47.6–403.2nW。

    Three low drop-out linear regulators (LDOs) were designed for a battery-powered home-care respiration detection chip, which has been implemented in Taiwan Semiconductor Manufacturing Company (TSMC) 0.35 μm CMOS/MEMS 2P4M 3.3 V/5 V process. .These three LDOs supply power to sensor, analog, and digital blocks of the respiration detection chip, and all of them feature no external capacitor and resistor. Moreover, sensor sensitivity is improved by using wide cantilever. The measurement results show the chip works correctly.
    The work mentioned above is the first chip. The second chip is to design a low-voltage low-power voltage reference circuit for converters with low startup voltage and energy harvesting circuit. This chip was designed by using TSMC 0.18 μm 1P6M mixed signal process. The post-layout simulations show that the lowest supply voltage is 0.4 V and its power consumption is 47.6 nW.

    第1章 簡介 1 1.1 研究動機 1 1.2 論文架構 3 第2章 線性穩壓器與參考電壓產生器概論 4 2.1 線性穩壓器使用時機 4 2.2 線性穩壓器工作原理 5 2.3 線性穩壓器規格 6 2.3.1 壓降電壓(Dropout Voltage) 6 2.3.2 靜態電流(Quiescent Current) 7 2.3.3 效率(Efficiency) 7 2.3.4 電源調節率(Line Regulation) 8 2.3.5 負載調節率(Load Regulation) 9 2.3.6 電源拒斥(Power Supply Rejection) 10 2.3.7 輸出雜訊(Output Noise) 11 2.3.8 電壓精準度(Voltage Accuracy) 12 2.4 傳統線性穩壓器 13 2.4.1 暫態分析 13 2.4.2 小訊號分析 15 2.4.3 電源拒斥分析 18 2.5 無外掛電容式線性穩壓器 21 2.5.1 暫態分析 21 2.5.2 小訊號分析 22 2.5.3 電源拒斥分析 24 2.6 參考電壓產生器的重要參數 26 2.6.1 溫度係數(Temperature Coefficient, TC) 26 2.6.2 電源靈敏度與電源拒斥(Line Sensitivity and PSR) 28 2.7 低電壓低功耗參考電壓產生器文獻回顧 29 2.7.1 含有BJT之帶差參考電路 29 2.7.2 電晶體組成之參考電壓產生器 31 第3章 呼吸感測系統晶片 35 3.1 系統架構 35 3.2 前一版本量測問題 37 3.2.1 直流準位漂移 37 3.2.2 靈敏度與放大倍率不足 40 3.3 本論文採用之壓阻式感測器 42 3.3.1 微機電製程介紹 43 3.3.2 感測器設計與模擬 45 3.4 線性穩壓器與新增的電路 46 3.4.1 負載特性與電路規格 46 3.4.2 電路設計 48 3.4.3 100 Hz取樣電路 52 3.5 模擬結果與布局考量 53 3.5.1 線性穩壓器 53 3.5.2 生醫前端感測系統 54 3.5.3 佈局考量 59 3.5.4 打線圖 61 3.6 量測結果 61 3.6.1 量測環境與儀器 61 3.6.2 感測器量測結果 64 3.6.3 線性穩壓器量測結果 74 3.6.4 線性穩壓器量測表現 82 3.6.5 生醫前端感測系統量測結果 83 3.6.6 蓋上一層聚二甲基矽氧烷之全系統量測結果 93 3.6.7 比較 95 第4章 低電壓低功耗參考電壓產生器 96 4.1 設計規格 96 4.2 電路設計 96 4.3 模擬結果與佈局考量 101 4.3.1 模擬結果 101 4.3.2 佈局考量 103 4.3.3 打線圖 103 4.3.4 比較 104 第5章 結論與未來展望 105 參考文獻 106

    [1]M. K. Tsai, “Design of a Respiration Detection Chip with DC Offset Calibration Technique,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Nov. 2014.
    [2]J. G. Webster, “Measurements of the Respiratory System,” Medical Instrumentation: Application and Design. New York: Wiley, 1998, ch. 9.
    [3]C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” in Proc. IEEE, vol. 84, no. 11, Nov. 1996, pp.1584–1614.
    [4]Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 2.1 μW area-efficient capacitively-coupled chopper instrumentation amplifier for ECG applications in 65 nm CMOS,” in IEEE ASSCC, Nov. 2010, pp. 1–4.
    [5]T. Cho, “Low-power, low-voltage, analog-to-digital converter technique using pipelined architectures,” Ph.D. Thesis, University of California, Berkeley, 1995.
    [6]K. Nagaraj, “A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits,” IEEE Trans. Circuits Syst., vol. 36, no. 9, pp. 1210–1216, Sep. 1989.
    [7]Y. W. Wang, “A wide-range programmable sinusoidal frequency synthesizer for electrochemical impedance spectroscopy measurement system,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2012.
    [8]R. J. Baker, “Clocked Circuits,” in CMOS Circuit Design, Layout, and Simulation, 2nd edition, New York: Wiley, 2008, pp. 386–388.
    [9]W. J. Wu, “Design of an impedance-to-digital converter for electrochemical impedance spectroscopic measurement system,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jun. 2013.
    [10]蔡進譯,「超高效率太陽電池──從愛因斯坦的光電效應談起」,物理雙月刊,第三十七卷第五期,頁703,2005。
    [11]D. Li, T. Li and D. Zhang, “A monolithic piezoresistive pressure-flow sensor with integrated signal-conditioning circuit,” IEEE Sensor J., vol. 11, no. 9, pp. 2122–2128, Sep. 2011.
    [12]Y. C. Lin, “Design of a Temperature-Insensitive Micro Cantilever-Based Respiration Detection Chip,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jun. 2013.
    [13]R. Y. Lin, “Design of a Respiration Detection Single Chip by Using Both Voltage- and Current-Mode MEMS Sensors,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2012.
    [14]T. H. Liu, “Design of an Infant Respiration Detection System in a Single Chip by Use of a Micro-Cantilever Flow Sensor,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2011.
    [15]I. Ta. Tseng, “Design of an Infant Respiration Detection Instrument by Use of a MEMS Piezo-Resistive Sensor,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jun. 2008.
    [16]V. Gupta and G. A. Rincon-Mora, “Analysis and design of monolithic, high PSR, linear regulators for SoC applications,” in Proc. IEEE SOC Conf., pp.311–315, Santa Clara, California, 2004.
    [17]R. J. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio, “Full on-chip CMOS low-dropout voltage regulator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 9, pp. 1879–1890, Sept 2007.
    [18]C. Zhan and W. H. Ki, “An output-capacitor-free adaptively biased low-dropout regulator with subthreshold undershoot-reduction for SoC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 5, pp. 1119–1131, May 2012.
    [19]G. Rincon-Mora and P. E. Allen, “A 1.1-V current-mode and piecewise-linear curvature-corrected bandgap reference,” IEEE J. Solid-State Circuits, vol. 33, no. 10, pp. 1551–1554, Oct. 1998.
    [20]K. N. Leung and P. K. T. Mok, “A sub-1-V 15-ppm/℃ CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, pp. 526–530, April 2002.
    [21]B. Razavi, Design of Analog CMOS Integrated Circuits, Chap 11. McGraw-Hill Education, 2002.
    [22]H. Banba, et al., “A CMOS bandgap reference circuit with sub-1V operation,” IEEE J. Solid-State Circuits, vol.34, no. 5, pp. 670–674, May 1999.
    [23]K. N. Leung and P. K. T. Mok, “A CMOS voltage reference based on weighted ∆VGS for CMOS low-dropout linear regulators,” IEEE J. Solid-State Circuits, vol. 38, pp. 146–150, Jan. 2003.
    [24]G. De Vita and G. Iannaccone, “A Sub-1-V, 10 ppm/℃, nanopower voltage reference generator,” IEEE J. Solid-State Circuits, vol. 42, no. 7,pp. 1536–1542, Jul. 2007.
    [25]Y. Wang, Z. Zhu, J. Yao, and Y. Yang, “A 0.45-V, 14.6-nW CMOS subthreshold voltage reference with no resistors and no BJTs.” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 7, pp. 621–625, Jul. 2015.
    [26]L. Y. Chen, “Design of a Pulse-Frequency-Modulation Controlled DC-DC Boost Converter with Low-Startup Voltage and Wide-Input-Range,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Nov. 2015.
    [27]D. L. Tsai, “A Low-Power-Consumption Boost Converter with Maximum Power Point Tracking Algorithm for Indoor Photovoltaic Energy Harvesting,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2014.
    [28]Wei-Chung Chen, Yi-Ping Su, Yu-Huei Lee, Chin-Long Wey, Ke-Horng Chen, “0.65V-Input-Voltage 0.6V-Output-Voltage 30ppm/℃ Low-Dropout Regulator with Embedded Voltage Reference for Low-Power Biomedical Systems,” ISSCC Dig. Tech. Papers, pp301–306, Feb. 2014.

    無法下載圖示 校內:2021-02-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE