簡易檢索 / 詳目顯示

研究生: 林彥如
Lin, Yen-Ju
論文名稱: 基於演化式演算法與非對稱S-curve之工業用機械手臂運動規劃研究
Study on Motion Planning for Industrial Manipulators based on Evolutionary Algorithm and Asymmetric S-curve
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 工業機械手臂運動規劃演化式演算法S-curve
外文關鍵詞: Industrial Manipulator, Motion Planning, S-curve, Evolutionary Algorithm
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工業4.0製造流程革新的浪潮下,加上近年人力成本日益上升,多軸工業機械手臂因具有高自由度的特性,在各領域皆可見其應用。運動規劃為影機械手臂工作效率的重要因素,完善的運動規劃能使機械手臂在滿足各物理限制下,在最短時間內完成任務。而S-curve因具有連續性的優點,為運動規劃技術中常見的架構之一,本論文以對稱型S-curve為基礎,推導非對稱7段型S-curve,以提升運動規劃之彈性。針對工作空間上的運動規劃,雖可指定機械手臂既定的運動路徑,然而因其工作空間與軸關節空間兩者之間為非線性關係,有可能發生軸飽和的現象,即超過軸關節的物理限制。因此本論文基於非對稱7段型S-curve的架構,利用演化式演算法,求得在工作空間與軸關節空間的物理限制下達到時間最佳化之運動規劃。最後,利用電腦模擬與六軸機械手臂實機驗證本論文所提方法之可行性。

    Riding the wave of the Industry 4.0 manufacturing process revolution and facing the prospect of ever-increasing labor costs, multi-axis industrial manipulators are now widely used in various fields due to their high degree of freedom. Motion planning is an important factor affecting the efficiency of industrial manipulators. Perfect motion planning enables the industrial manipulators to complete the task in the shortest time while satisfying physical constraints. S-curve is one of the most commonly used algorithms in motion planning due to its advantages in continuity. Therefore, based on the symmetrical S-curve, this thesis derives an asymmetric 7-segment S-curve to enhance the flexibility of motion planning. If motion planning is performed in the workspace, the moving path of the industrial manipulator can be specified. However, because of the nonlinear relationship between the workspace and the joint space, the phenomenon of joint saturation may occur. Namely, joint constraints may be violated. To cope with the aforementioned problem, this thesis proposes an approach that exploits evolutionary algorithms and asymmetric 7-segment S-curves to obtain time-optimized motion planning without violating the physical constraints of the workspace and joint space. The results of simulations and experiments conducted on a 6-DOF industrial manipulator indicate that the proposed approach is feasible.

    中文摘要 I EXTENDED ABSTRACT II 致謝 X 目錄 XII 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 論文架構與貢獻 5 第二章 工業機械手臂運動學與系統動態模型 7 2.1 順向運動學 7 2.2 尤拉角表示法 12 2.3 逆向運動學 13 2.4 系統動態模型 19 2.5 系統參數鑑別 21 第三章 基於演化式演算法之S-curve運動規劃 23 3.1 S-curve 23 3.2 演化式演算法 30 3.3 運動規劃流程 35 第四章 模擬與實驗 42 4.1 模擬介紹 42 4.2 實驗介紹 44 4.3 不同段型S-curve之運動規劃比較 48 4.3.1 模擬一結果 49 4.3.2 實驗一結果 57 4.4 相同軌跡在不同高度之運動規劃比較 61 4.4.1 模擬二結果 62 4.4.2 實驗二結果 71 第五章 結論與建議 75 5.1 結論 75 5.2 未來展望與建議 76 參考文獻 77

    [1] 黃仲宏, " 2020 年工業機器人產業發展趨勢與台灣的機會," 機械工業技術與產業資訊專輯, vol. 442 期, pp. 18-23, 2020.
    [2] 黃仲宏, "從智慧製造趨勢看2019年台灣工業機器人的發展機會," 機械工業技術與產業資訊專輯, vol. 430 期, pp. 28-32, 2019.
    [3] S. Perumaal and N. Jawahar, "Synchronized trigonometric S-curve trajectory for jerk-bounded time-optimal pick and place operation," International Journal of Robotics and Automation, vol. 27, no. 4, p. 385, 2012.
    [4] Y. C. Chen, "Solving robot trajectory planning problems with uniform cubic B‐splines," Optimal Control Applications and Methods, vol. 12, pp. 247-262, 1991.
    [5] A. Gasparetto and V. Zanotto, "A new method for smooth trajectory planning of robot manipulators," Mechanism and Machine Theory, vol. 42, no. 4, pp. 455-471, 2007.
    [6] A. Gasparetto and V. Zanotto, "A technique for time-jerk optimal planning of robot trajectories," Robotics and Computer-Integrated Manufacturing, vol. 24, no. 3, pp. 415-426, 2008.
    [7] A. Gasparetto and V. Zanotto, "Optimal trajectory planning for industrial robots," Advances in Engineering Software, vol. 41, no. 4, pp. 548-556, 2010.
    [8] Ü. Dinçer and M. Çevik, "Improved trajectory planning of an industrial parallel mechanism by a composite polynomial consisting of Bezier curves and cubic polynomials," Mechanism and Machine Theory, vol. 132, pp. 248-263, 2019.
    [9] S. Kucuk, "Optimal trajectory generation algorithm for serial and parallel manipulators," Robotics and Computer-Integrated Manufacturing, vol. 48, pp. 219-232, 2017.
    [10] R. Haschke, E. Weitnauer, and H. Ritter, "On-line planning of time-optimal, jerk-limited trajectories," in Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 3248-3253.
    [11] H. Li, M. Le, Z. Gong, and W. Lin, "Motion profile design to reduce residual vibration of high-speed positioning stages," IEEE/ASME Transactions on Mechatronics, vol. 14, no. 2, pp. 264-269, 2009.
    [12] Y. Fang, J. Hu, W. Liu, Q. Shao, J. Qi, and Y. Peng, "Smooth and time-optimal S-curve trajectory planning for automated robots and machines," Mechanism and Machine Theory, vol. 137, pp. 127-153, 2019.
    [13] A. Bharathi and J. Dong, "Feedrate optimization for smooth minimum-time trajectory generation with higher order constraints," The International Journal of Advanced Manufacturing Technology, vol. 82, no. 5-8, pp. 1029-1040, 2016.
    [14] M. Boryga and A. Graboś, "Planning of manipulator motion trajectory with higher-degree polynomials use," Mechanism and Machine Theory, vol. 44, no. 7, pp. 1400-1419, 2009.
    [15] F. Liang, J. Zhao, and S. Ji, "An iterative feed rate scheduling method with confined high-order constraints in parametric interpolation," The International Journal of Advanced Manufacturing Technology, vol. 92, no. 5, pp. 2001-2015, 2017.
    [16] 黃俊龍,在輪廓誤差與物理限制下之一種基於演化式計算之機械手臂運動規劃研究,碩士學位論文,國立成功大學,台灣,2020。
    [17] T.-C. Lu and S.-L. Chen, "Time-optimal feedrate algorithm for non-uniform rational B-spline tool paths with process and machine tool constraints," in Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2019, pp. 752-757.
    [18] A.-C. Lee, M.-T. Lin, Y.-R. Pan, and W.-Y. Lin, "The feedrate scheduling of NURBS interpolator for CNC machine tools," Computer-Aided Design, vol. 43, no. 6, pp. 612-628, 2011.
    [19] X. Du, J. Huang, and L.-M. Zhu, "A complete S-shape feed rate scheduling approach for NURBS interpolator," Journal of Computational Design and Engineering, vol. 2, no. 4, pp. 206-217, 2015.
    [20] 黃子源,基於運動學與動力學物理限制之工業用機械手臂運動規劃研究,碩士學位論文,國立成功大學,台灣,2020。
    [21] M. A. a. H. Şen, "S-curve Motion Profile Design for Vibration Control of Single Link Flexible Manipulator," Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 23, no. 68, pp. 661-676, 2021.
    [22] Y. Chen, X. Ji, Y. Tao, and H. Wei, "Look-ahead algorithm with whole S-curve acceleration and deceleration," Advances in Mechanical Engineering, vol. 5, 2013.
    [23] F. Song, S. Yu, T. Chen, and L.-N. Sun, "Research on CNC simulation system with instruction interpretations possessed of wireless communication," The Journal of Supercomputing, vol. 72, no. 7, pp. 2703-2719, 2016.
    [24] Y. Bai, X. Chen, and Z. Yang, "A generic method to generate as-curve profile in commercial motion controller," in Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2017.
    [25] K.-H. Rew and K.-S. Kim, "Using asymmetric S-curve profile for fast and vibrationless motion," in Proceedings of the 2007 International Conference on Control, Automation and Systems, 2007, pp. 500-504.
    [26] T.-C. Lu and S.-L. Chen, "Genetic algorithm-based S-curve acceleration and deceleration for five-axis machine tools," The International Journal of Advanced Manufacturing Technology, vol. 87, no. 1, pp. 219-232, 2016.
    [27] 謝岳峻,S 型加減速參數最佳化分析並應用於五軸循跡控制器,碩士學位論文,國立中正大學,機械工程學系,台灣,2015。
    [28] T.-C. Lu, S.-L. Chen, and E. C.-Y. Yang, "Near time-optimal S-curve velocity planning for multiple line segments under axis constraints," IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9582-9592, 2018.
    [29] K. S. Fu, R. Gonzalez, and C. G. Lee, Robotics: Control, Sensing, Vision, and Intelligence. Tata McGraw-Hill Education, 1987.
    [30] A. C. Reddy, "Difference between Denavit-Hartenberg (DH) classical and modified conventions for forward kinematics of robots with case study," in Proceedings of the International Conference on Advanced Materials and manufacturing Technologies (AMMT), 2014, pp. 267-286.
    [31] S. KuCuk and Z. Bingul, "The inverse kinematics solutions of industrial robot manipulators," in Proceedings of the IEEE International Conference on Mechatronics. , 2004, pp. 274-279.
    [32] 魯昶甫,工業用機械手臂運動學參數鑑別與補償研究,碩士學位論文,國立成功大學,電機工程學系,台灣,2019。
    [33] W. Khalil and J.-F. Kleinfinger, "Minimum operations and minimum parameters of the dynamic models of tree structure robots," IEEE Journal on Robotics and Automation, vol. 3, no. 6, pp. 517-526, 1987.
    [34] 莊閔皓,六軸工業用機械手臂之系統鑑別與順應控制研究,碩士學位論文,國立成功大學,電機工程學系,台灣,2016。
    [35] J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel, "Experimental robot identification using optimised periodic trajectories," Mechanical Systems and Signal Processing, vol. 10, no. 5, pp. 561-577, 1996.
    [36] (2010). 現代啟示錄-條件數 [Online]. Available: https://ccjou.wordpress.com/2010/07/01/%E6%A2%9D%E4%BB%B6%E6%95%B8/
    [37] J. R. G. Martínez, J. R. Reséndiz, M. Á. M. Prado, and E. E. C. Miguel, "Assessment of jerk performance s-curve and trapezoidal velocity profiles," in Proceedings of the 2017 XIII International Engineering Congress (CONIIN), 2017, pp. 1-7.
    [38] T. Bäck and H.-P. Schwefel, "An overview of evolutionary algorithms for parameter optimization," Evolutionary Computation, vol. 1, no. 1, pp. 1-23, 1993.
    [39] D. Whitley, "A genetic algorithm tutorial," Statistics and Computing, vol. 4, no. 2, pp. 65-85, 1994.
    [40] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of the ICNN'95-International Conference on Neural Networks, 1995, vol. 4, pp. 1942-1948.
    [41] Y. Shi and R. Eberhart, "A modified particle swarm optimizer," in Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, 1998, pp. 69-73.

    下載圖示 校內:2024-07-22公開
    校外:2024-07-22公開
    QR CODE