簡易檢索 / 詳目顯示

研究生: 陳玠璋
Chen, Chei-Chan
論文名稱: 一種應用於高速紅外光線感測的新穎p-strain Si /i-SiGeC/n-Si異質結構之研究
A Novel p-strain Si /i-SiGeC/n-Si Heterostructure for High Speed Infrared Detecting Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 61
中文關鍵詞: 快速升溫化學氣相沉積應變矽矽鍺光感測器
外文關鍵詞: RTCVD, SiGeC, detector, strain Si
相關次數: 點閱:65下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文中提出將strain Si成長於SiGeC上,因為碳(C)原子的存在將可大幅減少Buffer layer的厚度,並且增加鍺(Ge)的高溫穩定性與strain Si臨界厚度。然後 利用strain Si 的高移動率在n(100)單晶矽基板上研製p-strain Si/i-Si1-x-yGexCy /n(100)-Si結構作為高速的紅外線光感測器。
      吾人利用不同流量(3, 5, 7 sccm)的GeH4研製出三種不同形式的紅外光感測器。在常溫下這些感測器於漏電流分別小於2.53x10-4A, 7.1x10-4A 和 6.78x10-4A之下測得的崩潰電壓各為49V, 42V 和 35V。與已報導的元件比較這些感測器具有較高的崩潰電壓。
      在室溫下及1Mw功率, 632.8nm 波長的雷射照射於-35V, -30V和 -25V的偏壓時這些感測器量得光電流及暗電流分別為5.63x10-3A, 6.88x10-3A, 8.22x10-3A和2.53x10-4A, 7.1x10-4A 和 6.78x10-4A。也就是光暗電流比可達3860, 53.2和 54.9。如此證明本論文所研發的p-strain Si/i-Si1-x-yGexCy /n(100)-Si結構可應用於高速高壓紅外光感測器。

      The thesis reports the study of development a p-strain Si/i-Si1-x-yGexCy/n(100)-Si heterostructure on n(100) silicon substrate for high speed infrared detecting applications in detail. Three types infrared photo detectors have been developed with various GeH4 gas flow rate of 3, 5, 7 sccm respectively. At room temperature, and biases of -35V, -30V and -25V, the photocurrents of the detector under illumination of 1mW, infrared light (632.8nm)/dark currents are 5.63x10-3A/2.53x10-4A, 6.88x10-3A/7.1x10-4A,and 8.22x10-3A/ 6.78x10-4A, respectively. This means the typical photo/dark current ratios under the room temperature are 3860, 53.2 and 54.9 respectively. Furthermore, the detectors have reverse breakdown voltages of 49V, 42V, and 35V, respectively, which are higher than the reported one. Therefore, the developed p-strain Si/i-Si1-x-yGexCy/n(100)-Si heterostructure on n(100) silicon substrate is available for high voltage and high speed infrared detecting applications

    中文摘要....................................III 英文摘要....................................V 附圖表目錄..................................VI 第一章 前言................................1 地二章 薄膜的成長..........................4 2-1 快速升溫化學氣相薄膜成長系統 (RTCVD)簡介..5 2-2 蒸著機系統(Thermal Evaporator)簡介........5 2-3 矽基板之清洗及備置........................6 第三章 Si1-x-yGexCy成長Strain-Si的理論分析....7 第四章 p-strain Si /i-SiGeC/n-Ge 成長的方法及薄膜特性........................................13 4-1 PIN光檢測器工作原理......................13 4-2 成長方法.................................14 4-3 GeH4 流量對表面的影響....................16 第五章 p-strain Si /i-SiGeC/n-Ge薄膜特性分析.19 5-1 紅外線光感測器光暗電流...................19 5-1-1 光暗電流量測結果.......................19 5-1-2 結論...................................20 5-2 紅外線光感測器的AES......................20 5-2-1 AES量測結果............................20 5-2-2 結論...................................21 5-3 紅外線光感測器的XRD......................21 5-3-1 XRD量測結果............................21 5-3-2 結論...................................21 5-4 紅外線光感測器的Raman....................22 5-4-1 Raman量測結果..........................22 5-4-2 結論...................................22 5-5 GeH4 流量與PR(Photo Response)的關係......22 5-5-1 PR(Photo Response)量測結果.............22 5-5-2 結論...................................23 5-6 GeH4 流量與mobility的關係................23 5-6-1 mobility量測結果.......................23 5-6-2 結論...................................23 5-7 總結.....................................24 第六章 結論與展望............................25 6-1 結論.....................................25 6-2 展望.....................................26

    [1] Jyh-Jier Ho, Y.K. Fang, K.H. Wu and S.C. Huang, M.S. Ju and Jing-Jenn     Lin, “High-speed Amorphous Silicon Germanium Infrared Sensors Prepared on   Crystalline Silicon Substrates”, IEEE Trans. on Electron Devices, Vol.45,   No.9, pp.2085-2088, Sept. (1998).
    [2] Jyh-Jier Ho, Y.K. Fang,K.H. Wu, and C.S. Tsai, “High-gain p-i-n infrared   photosensors with Bragg reflectors on amorphous silicon alloy,” Appl.     Phys. Lett.,.70 (7), pp.826-828, 17 Feb. (1997).
    [3] C.Y. Chen, J.-J. Ho, Y.K. Fang and S.F. Chen, “Performance Analysis and   Development of High-speed pin Infrared Sensors Prepared on Crystalline     Silicon Substrates”, ICOSN 2001 (SPIE), pp305-310,June (2001).
    [4] S. B. Hwang, Y. K. Fang, K. H. Chen, C. R. Liu, J. D. Hwang and M. H.     Chou, “An a-Si:H/a-Si,Ge:H bulk barrier phototransistor with a-SiC:H     barrier enhancement layer for high-gain IR optical detector”, IEEE Trans   on Electron Devices, Vol 40, No 4, pp.721, (1993).
    [5] Y. K. Fang, S. B. Hwang, K. H. Chen, C. R. Liu and L. C. Kuo, “A metal-   amorphous silicon-germanium alloy schottky barrier for infrared        optoelectronic IC on glass substrate application”, IEEE Trans on Electron   Devices, Vol 39, No 6, pp.1350, (1992).
    [6] U. Konig, A. J. Boers, F. Schaffler, and E. Kasper, Electron. Lett. 28,    160 (1992).
    [7] K. Ismail, B. S. Meyerson, S. Rishton, J. Chu, S. Nelson, and J. Nocera,   IEEE Electron Device Lett. 13, 229 (1992).
    [8] J. Welser, J. L. Hoyt, and J. F. Gibbons, IEEE Electron Device Lett. 15,   100 (1994).
    [9] M. Gluck, T. Hackbarth, U. Konig, A. Haas, G. Hock, and E. Kohn,       Electron. Lett. 33, 335 (1997).
    [10] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, J. Appl. Phys.    80, 1567 (1996)
    [11] J.C.Bean,Appl.Phys.Lett.Vol.44,pp.102-104,1984.
    [12] B.S.Meyerson,Appl.Phys.Lett.Vol.48,pp.797-799,1986.
    [13] J.F.Gibbons et al.,Appl.Phys.Lett.Vol.47,pp.721-724,1985.
    [14] Crriel et al. 2001 J. Vac. Sci. Technol. B 19(6), pp.2268.
    [15] Compound Semiconductor, September, 2002, “Strain silicon joins the     drive to keep CMOS chips on course”, p39-43.
    [16] L. D. Lanzerotti et al., “Suppression of boron transient enhanced      diffusion in SiGe heterojunction bipolar transistors by carbon         incorporation”, Appl. Phys. Lett., 70(23), pp3125-3127, 9 June 1997..
    [17] H. J. Osten et al., Proceedings of the 1999 BCTM, pp.109-112, 1999.
    [18] J. Hoyt et al., Tech. Dig. IEDM, pp.23-26, 2002.
    [19] D. K. Nayak et al., Appl. Phys. Lett. Vol.64, pp.2514-2516, 1994.
    [20] S. I. Takagi et al., “Comparative study of phonon-limited mobility of    two-dimensional electron in strained and unstrained Si metal-oxide-      semiconductor field-effect transistors,” J. Appl. Phys. 80 (3), pp1567-   1577, 1 August 1996.
    [21] ULSI Devices, P65-66, C. Y. Chang, S. M. Sze
    [22] R.People and J.C.Bean,Appl.phys.Lett.Vol.47,pp.322-324,1985
    [23] 楊忠憲,”The Study and Fabrication of Advanced Piezoresistive Pressure   and Shear-Stress Sensors by Micro Electro Mechanical System (MEMS)       Technologies”, pp.10, 國立成功大學八十八學年度碩士論文.
    [24] T. Tezuka et al.,IEDM Tech. Dig.,p.946,2001.
    [25] N. Sugii et al.,J. Vac. Sci. Technol, B,v20,p.1891,2002.
    [26] L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-   xGex/Si Waveguide Photodetectors Operating at λ=1.3μm,” J. Lightwave     Technol., vol. 14, pp.787-797, May 1996.
    [27] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial          multilayers,” J. Cryst. Growth, vol. 27, pp. 118-125, 1974.B. W. Dodson    and J. Y. Tsao, “Structure relaxation in strained layer heterostruct-
    [28] ures,” in Proc. Second Int. Symp. Silicon Molecular Beam Epitaxy, J. C.   Bean and L. J. Schowalter, Eds., Pennington, NJ:Electrochemical Soc.,     1988, pp. 105-113.
    [29] R. People and J. C. Bean, “Calculation of critical layer thickness     versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures”   Appl. Phys. Lett., vol. 47, no. 3, pp. 322-324, 1985.
    [30] E. kasper and S. Heim, “Challenges of high ge content silicon germanium   structures” Applied Surface Science 224 (2004) 3-8.
    [31] 林鴻志,“矽鍺磊晶技術及元件上的應用”,<電子資訊>第9卷第1期2003年6月。
    [32] F.M. Bufler and B. Meinerzhagen, “Hole transport in strained Si1-xGex    alloys on Si1-yGey substrates,” J. Appl. Phys., Vol. 84, pp. 5597-5502,   1998.
    [33] M. M. rieger and P. Vogl, Phys. Rev., B 48, 14276 (1993).
    [34] Liqing Wu and Meichun Huang et al., “ Theoretical study of valence-band   offsets of strained Si1-x-yGexCy/Si(001) heterostructures,” J. Appl.     Phys., Vol.86, pp. 4473-4476, 1999.
    [35] M. V. Fischetti and S. E. Laux, “Band structure, deformation        potentials, and carrier mobility in strained Si, Ge and SiGe alloys,” J.   Appl. Phys., vol. 80, no. 4, pp. 2234–2252, 1996.
    [36] T. E. Whall and E. H. C. Parker, “Silicon–germanium heterostructures    advanced materials and devices for silicon technology,” J. Mater. Sci.,   vol. 6, pp. 249–264, 1995.
    [37] F. M. Bufler, P. Graf, B. Meinerzhagen, B. Adeline, M. M. Riegger, H.    Kibbel, and G. Fischer, “Low- and high-field electron transport        parameters for unstrained and strained Si1-xGex,” IEEE Electron Device    Lett., vol. 18, no. 6, pp. 264–266, 1997.
    [38] F. M. Bulter, P. Graf, B. Meinerzhagen, G. Fischer, and H. Kibbel,      “Hole trans-port investigation in unstrained and strained SiGe,” J. Vac.   Sci. Technol. B, vol. 16, pp. 1667–1669, 1998.
    [39] T. Manku and A. Nathan, “Effective mass for strained p-type Si1-      xGex ,” J. Appl. Phys., vol. 69, no. 12, pp. 8414–8416, 1991.
    [40] S. John, S. K. Ray, E. Quinones, S. K. Oswal, and S. K. Banerjee,      Heterostruc p-channel metal-oxide-semiconductor transistor utilizing a Si1  -xGex Cy channel,” Appl. Phys. Lett., vol. 74, no. 6, pp. 847–849, 1999.
    [41] S. Maikap, L. K. Bera, S. K. Ray, S. John, S. K. Banerjee, and C. K.     Maiti, “Electrical characterization of Si/ Si1-xGex /Si quantum well     heterostuctures using a MOS capacitor,” Solid-State Electron., vol. 44,    pp. 1029–1034, 2000.
    [42] T. Ngai, W. J. Qi, X. Chen, R. Sharma, J. L. Fretwell, J. C. Lee, and S.   Banerjee, “Electrical properties of ZrO2 gate dielectric on SiGe,” Appl.   Phys. Lett., vol. 76, no. 4, pp. 502–504, 2000.
    [43] Y. C. Yeo, V. Subramanian, J. Kedzierski, P. Xuan, T. J. King, J. Bokor,   and C. Hu, “Nanoscale ultra-thin-body silicon-on-insulator PMOSFET with a   SiGe/Si hetero-structure channel,” IEEE Electron Device Lett., vol. 21,    pp. 161–163, Apr. 2000.
    [44] S. Verdonckt-Vanderbroek, E. F. Crabbe, B. S. Meyerson, D. L. Harame, P.   J. Restle, J. M. C. Stork, and J. B. Johnson, “SiGe-channel          heterojunction P-MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp.    90–101, Jan. 1994.
    [45] Xiangdong Chen, et. al., “Hole and Electron Mobility Enhacement in     Strained SiGe Vertical MOSFETs,” IEEE Trans. Electron Devices, vol. 48,    pp. 1975–1980, Sep. 2001.
    [46] F. Stern and S.E. Laux, Appl. Phys. Lett. 61, 1110 (1992).
    [47] Deepak K. Nayak, Sang Kook Chun, “Low-field mobility of strained si on   (100) Si1-xGex substrate,” APPl. Phys. Lett., vol. 64, pp. 2514-2516, 1994
    [48] D. K. Nayak, J. C. S. Woo, J. S. Park, K. L. Wang, and K. P. MacWillams,   Appl. Phys. Lett. 62, 2853 (1993).
    [49] Hiroshi Nakatsuuji, et al., IEDM Tech. Dig., 2002.
    [50] J. Hoyt et al., IEDM Tech. Dig., pp. 23-26, 2002.
    [51] M. V. Fischetti and S. E. Laux, J. Appl. Lett., Vol. 80, p. 1567, 1996.
    [52]賴耿陽,紅外線工學基礎應用,台灣復文興業,pp. 1-5, 1985。
    [53] J. M. Hinckley and J. Singh, “Hole transport theory in pseudomorphic    Si1-xGex alloys grown on Si (001) substrates,” Phys. Rev. B, vol. 41, no.   5, pp. 2912–2926, 1990.
    [54] J. M. Hinckley, V. Sankaran, and J. Singh, “Charged carrier transport in   Si1-xGex pseudomorphic alloys matched to Si—strain-related transport     improvements,” Appl. Phys. Lett., vol. 55, pp. 2008–2010, 1989.
    [55] Deepak K. Nayak, Sang Kook Chun, “Low-field mobility of strained si on   (100) Si1-xGex substrate,” APPl. Phys. Lett., vol. 64, pp. 2514-2516,     1994

    下載圖示 校內:立即公開
    校外:2007-02-08公開
    QR CODE