| 研究生: |
陳玠璋 Chen, Chei-Chan |
|---|---|
| 論文名稱: |
一種應用於高速紅外光線感測的新穎p-strain Si /i-SiGeC/n-Si異質結構之研究 A Novel p-strain Si /i-SiGeC/n-Si Heterostructure for High Speed Infrared Detecting Applications |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 快速升溫化學氣相沉積 、應變矽 、矽鍺 、光感測器 |
| 外文關鍵詞: | RTCVD, SiGeC, detector, strain Si |
| 相關次數: | 點閱:65 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中提出將strain Si成長於SiGeC上,因為碳(C)原子的存在將可大幅減少Buffer layer的厚度,並且增加鍺(Ge)的高溫穩定性與strain Si臨界厚度。然後 利用strain Si 的高移動率在n(100)單晶矽基板上研製p-strain Si/i-Si1-x-yGexCy /n(100)-Si結構作為高速的紅外線光感測器。
吾人利用不同流量(3, 5, 7 sccm)的GeH4研製出三種不同形式的紅外光感測器。在常溫下這些感測器於漏電流分別小於2.53x10-4A, 7.1x10-4A 和 6.78x10-4A之下測得的崩潰電壓各為49V, 42V 和 35V。與已報導的元件比較這些感測器具有較高的崩潰電壓。
在室溫下及1Mw功率, 632.8nm 波長的雷射照射於-35V, -30V和 -25V的偏壓時這些感測器量得光電流及暗電流分別為5.63x10-3A, 6.88x10-3A, 8.22x10-3A和2.53x10-4A, 7.1x10-4A 和 6.78x10-4A。也就是光暗電流比可達3860, 53.2和 54.9。如此證明本論文所研發的p-strain Si/i-Si1-x-yGexCy /n(100)-Si結構可應用於高速高壓紅外光感測器。
The thesis reports the study of development a p-strain Si/i-Si1-x-yGexCy/n(100)-Si heterostructure on n(100) silicon substrate for high speed infrared detecting applications in detail. Three types infrared photo detectors have been developed with various GeH4 gas flow rate of 3, 5, 7 sccm respectively. At room temperature, and biases of -35V, -30V and -25V, the photocurrents of the detector under illumination of 1mW, infrared light (632.8nm)/dark currents are 5.63x10-3A/2.53x10-4A, 6.88x10-3A/7.1x10-4A,and 8.22x10-3A/ 6.78x10-4A, respectively. This means the typical photo/dark current ratios under the room temperature are 3860, 53.2 and 54.9 respectively. Furthermore, the detectors have reverse breakdown voltages of 49V, 42V, and 35V, respectively, which are higher than the reported one. Therefore, the developed p-strain Si/i-Si1-x-yGexCy/n(100)-Si heterostructure on n(100) silicon substrate is available for high voltage and high speed infrared detecting applications
[1] Jyh-Jier Ho, Y.K. Fang, K.H. Wu and S.C. Huang, M.S. Ju and Jing-Jenn Lin, “High-speed Amorphous Silicon Germanium Infrared Sensors Prepared on Crystalline Silicon Substrates”, IEEE Trans. on Electron Devices, Vol.45, No.9, pp.2085-2088, Sept. (1998).
[2] Jyh-Jier Ho, Y.K. Fang,K.H. Wu, and C.S. Tsai, “High-gain p-i-n infrared photosensors with Bragg reflectors on amorphous silicon alloy,” Appl. Phys. Lett.,.70 (7), pp.826-828, 17 Feb. (1997).
[3] C.Y. Chen, J.-J. Ho, Y.K. Fang and S.F. Chen, “Performance Analysis and Development of High-speed pin Infrared Sensors Prepared on Crystalline Silicon Substrates”, ICOSN 2001 (SPIE), pp305-310,June (2001).
[4] S. B. Hwang, Y. K. Fang, K. H. Chen, C. R. Liu, J. D. Hwang and M. H. Chou, “An a-Si:H/a-Si,Ge:H bulk barrier phototransistor with a-SiC:H barrier enhancement layer for high-gain IR optical detector”, IEEE Trans on Electron Devices, Vol 40, No 4, pp.721, (1993).
[5] Y. K. Fang, S. B. Hwang, K. H. Chen, C. R. Liu and L. C. Kuo, “A metal- amorphous silicon-germanium alloy schottky barrier for infrared optoelectronic IC on glass substrate application”, IEEE Trans on Electron Devices, Vol 39, No 6, pp.1350, (1992).
[6] U. Konig, A. J. Boers, F. Schaffler, and E. Kasper, Electron. Lett. 28, 160 (1992).
[7] K. Ismail, B. S. Meyerson, S. Rishton, J. Chu, S. Nelson, and J. Nocera, IEEE Electron Device Lett. 13, 229 (1992).
[8] J. Welser, J. L. Hoyt, and J. F. Gibbons, IEEE Electron Device Lett. 15, 100 (1994).
[9] M. Gluck, T. Hackbarth, U. Konig, A. Haas, G. Hock, and E. Kohn, Electron. Lett. 33, 335 (1997).
[10] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, J. Appl. Phys. 80, 1567 (1996)
[11] J.C.Bean,Appl.Phys.Lett.Vol.44,pp.102-104,1984.
[12] B.S.Meyerson,Appl.Phys.Lett.Vol.48,pp.797-799,1986.
[13] J.F.Gibbons et al.,Appl.Phys.Lett.Vol.47,pp.721-724,1985.
[14] Crriel et al. 2001 J. Vac. Sci. Technol. B 19(6), pp.2268.
[15] Compound Semiconductor, September, 2002, “Strain silicon joins the drive to keep CMOS chips on course”, p39-43.
[16] L. D. Lanzerotti et al., “Suppression of boron transient enhanced diffusion in SiGe heterojunction bipolar transistors by carbon incorporation”, Appl. Phys. Lett., 70(23), pp3125-3127, 9 June 1997..
[17] H. J. Osten et al., Proceedings of the 1999 BCTM, pp.109-112, 1999.
[18] J. Hoyt et al., Tech. Dig. IEDM, pp.23-26, 2002.
[19] D. K. Nayak et al., Appl. Phys. Lett. Vol.64, pp.2514-2516, 1994.
[20] S. I. Takagi et al., “Comparative study of phonon-limited mobility of two-dimensional electron in strained and unstrained Si metal-oxide- semiconductor field-effect transistors,” J. Appl. Phys. 80 (3), pp1567- 1577, 1 August 1996.
[21] ULSI Devices, P65-66, C. Y. Chang, S. M. Sze
[22] R.People and J.C.Bean,Appl.phys.Lett.Vol.47,pp.322-324,1985
[23] 楊忠憲,”The Study and Fabrication of Advanced Piezoresistive Pressure and Shear-Stress Sensors by Micro Electro Mechanical System (MEMS) Technologies”, pp.10, 國立成功大學八十八學年度碩士論文.
[24] T. Tezuka et al.,IEDM Tech. Dig.,p.946,2001.
[25] N. Sugii et al.,J. Vac. Sci. Technol, B,v20,p.1891,2002.
[26] L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1- xGex/Si Waveguide Photodetectors Operating at λ=1.3μm,” J. Lightwave Technol., vol. 14, pp.787-797, May 1996.
[27] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth, vol. 27, pp. 118-125, 1974.B. W. Dodson and J. Y. Tsao, “Structure relaxation in strained layer heterostruct-
[28] ures,” in Proc. Second Int. Symp. Silicon Molecular Beam Epitaxy, J. C. Bean and L. J. Schowalter, Eds., Pennington, NJ:Electrochemical Soc., 1988, pp. 105-113.
[29] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures” Appl. Phys. Lett., vol. 47, no. 3, pp. 322-324, 1985.
[30] E. kasper and S. Heim, “Challenges of high ge content silicon germanium structures” Applied Surface Science 224 (2004) 3-8.
[31] 林鴻志,“矽鍺磊晶技術及元件上的應用”,<電子資訊>第9卷第1期2003年6月。
[32] F.M. Bufler and B. Meinerzhagen, “Hole transport in strained Si1-xGex alloys on Si1-yGey substrates,” J. Appl. Phys., Vol. 84, pp. 5597-5502, 1998.
[33] M. M. rieger and P. Vogl, Phys. Rev., B 48, 14276 (1993).
[34] Liqing Wu and Meichun Huang et al., “ Theoretical study of valence-band offsets of strained Si1-x-yGexCy/Si(001) heterostructures,” J. Appl. Phys., Vol.86, pp. 4473-4476, 1999.
[35] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234–2252, 1996.
[36] T. E. Whall and E. H. C. Parker, “Silicon–germanium heterostructures advanced materials and devices for silicon technology,” J. Mater. Sci., vol. 6, pp. 249–264, 1995.
[37] F. M. Bufler, P. Graf, B. Meinerzhagen, B. Adeline, M. M. Riegger, H. Kibbel, and G. Fischer, “Low- and high-field electron transport parameters for unstrained and strained Si1-xGex,” IEEE Electron Device Lett., vol. 18, no. 6, pp. 264–266, 1997.
[38] F. M. Bulter, P. Graf, B. Meinerzhagen, G. Fischer, and H. Kibbel, “Hole trans-port investigation in unstrained and strained SiGe,” J. Vac. Sci. Technol. B, vol. 16, pp. 1667–1669, 1998.
[39] T. Manku and A. Nathan, “Effective mass for strained p-type Si1- xGex ,” J. Appl. Phys., vol. 69, no. 12, pp. 8414–8416, 1991.
[40] S. John, S. K. Ray, E. Quinones, S. K. Oswal, and S. K. Banerjee, Heterostruc p-channel metal-oxide-semiconductor transistor utilizing a Si1 -xGex Cy channel,” Appl. Phys. Lett., vol. 74, no. 6, pp. 847–849, 1999.
[41] S. Maikap, L. K. Bera, S. K. Ray, S. John, S. K. Banerjee, and C. K. Maiti, “Electrical characterization of Si/ Si1-xGex /Si quantum well heterostuctures using a MOS capacitor,” Solid-State Electron., vol. 44, pp. 1029–1034, 2000.
[42] T. Ngai, W. J. Qi, X. Chen, R. Sharma, J. L. Fretwell, J. C. Lee, and S. Banerjee, “Electrical properties of ZrO2 gate dielectric on SiGe,” Appl. Phys. Lett., vol. 76, no. 4, pp. 502–504, 2000.
[43] Y. C. Yeo, V. Subramanian, J. Kedzierski, P. Xuan, T. J. King, J. Bokor, and C. Hu, “Nanoscale ultra-thin-body silicon-on-insulator PMOSFET with a SiGe/Si hetero-structure channel,” IEEE Electron Device Lett., vol. 21, pp. 161–163, Apr. 2000.
[44] S. Verdonckt-Vanderbroek, E. F. Crabbe, B. S. Meyerson, D. L. Harame, P. J. Restle, J. M. C. Stork, and J. B. Johnson, “SiGe-channel heterojunction P-MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp. 90–101, Jan. 1994.
[45] Xiangdong Chen, et. al., “Hole and Electron Mobility Enhacement in Strained SiGe Vertical MOSFETs,” IEEE Trans. Electron Devices, vol. 48, pp. 1975–1980, Sep. 2001.
[46] F. Stern and S.E. Laux, Appl. Phys. Lett. 61, 1110 (1992).
[47] Deepak K. Nayak, Sang Kook Chun, “Low-field mobility of strained si on (100) Si1-xGex substrate,” APPl. Phys. Lett., vol. 64, pp. 2514-2516, 1994
[48] D. K. Nayak, J. C. S. Woo, J. S. Park, K. L. Wang, and K. P. MacWillams, Appl. Phys. Lett. 62, 2853 (1993).
[49] Hiroshi Nakatsuuji, et al., IEDM Tech. Dig., 2002.
[50] J. Hoyt et al., IEDM Tech. Dig., pp. 23-26, 2002.
[51] M. V. Fischetti and S. E. Laux, J. Appl. Lett., Vol. 80, p. 1567, 1996.
[52]賴耿陽,紅外線工學基礎應用,台灣復文興業,pp. 1-5, 1985。
[53] J. M. Hinckley and J. Singh, “Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si (001) substrates,” Phys. Rev. B, vol. 41, no. 5, pp. 2912–2926, 1990.
[54] J. M. Hinckley, V. Sankaran, and J. Singh, “Charged carrier transport in Si1-xGex pseudomorphic alloys matched to Si—strain-related transport improvements,” Appl. Phys. Lett., vol. 55, pp. 2008–2010, 1989.
[55] Deepak K. Nayak, Sang Kook Chun, “Low-field mobility of strained si on (100) Si1-xGex substrate,” APPl. Phys. Lett., vol. 64, pp. 2514-2516, 1994