簡易檢索 / 詳目顯示

研究生: 郭家銘
Kuo, Chia-Ming
論文名稱: 放寬回授路徑時間及使用運算放大器共用技術之低失真三角積分調變器設計
Design of a Low-Distortion Sigma-Delta Modulator with Relaxed Feedback Path Timing and Operational Amplifier Sharing Technique
指導教授: 劉濱達
Liu, Bin-Da
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 99
中文關鍵詞: 低失真三角積分調變器放寬回授路徑時間技術運算放大器共用技術資料加權平均演算法兼併式電容技術
外文關鍵詞: Low-distortion sigma-delta modulator, feedback path relaxed timing technique, operational amplifier sharing technique, data weighted averaging algorithm, merged capacitor switching technique
相關次數: 點閱:122下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種適用於無線通訊系統之低失真三角積分調變器,除了保有高解析度的特性外,更進一步拓寬頻寬與降低功率消耗。在本架構中,將調變器回授路徑的處理時間延長至時脈的半周期,以改善傳統低失真三角積分調變器在高速運作之下,量化器及動態元件匹配電路僅能運作在非重疊時脈時間的問題。另一方面,運算放大器是造成調變器功率消耗的主要原因,因此提出錯開三級積分器的積分時間的技巧,三級積分器的運算僅需一個運算放大器就能完成,大幅降低功耗。此外,為降低數位類比轉換器中電容的不匹配問題,於回授路徑中使用資料加權平均演算法,並在其電路實現中引入兼併式電容技術,藉此降低動態元件匹配電路的複雜度及面積的需求。
    本電路使用90 nm一層多晶矽九層金屬線製程,設計出在供應電壓1.2 V、取樣頻率80 MHz、超取樣率16倍的設定下,訊號頻寬2.5 MHz的三階、四位元量化器之低失真三角積分調變器。由模擬結果得知,其有效位元數為12.93位元,訊雜比為79.62 dB,整體功率消耗為1.16 mW,FoM可低至29.66 fJ/ conversion。

    This thesis presents the proposed low-distortion sigma-delta modulator which is suitable for the applications in wireless communication system. In addition to high resolution, extending the bandwidth and decreasing the power consumption are also goals of this design. The loop filter processes quantization error only in conventional low distortion sigma-delta modulator. However, the quantizer and dynamic element matching circuit are hard to accomplish in non-overlapping time interval for high speed applications. In order to mitigate the timing issue, the feedback path timing is relaxed to half cycle of clock period in the proposed architecture. On the other hand, the power consumed by operational amplifiers dominates the power consumption of overall modulator. The integration phases of three integrators have been staggered. Thus, the integrators in three stages are realized by only one operational amplifier. The power consumption is reduced greatly. Besides, the data weighted averaging algorithm adopts in dynamic element matching circuit to eliminate the effect of mismatch among capacitors in DAC. Merged capacitor switching technique is introduced into implementation of the proposed dynamic element matching circuit. Hence, its complexity and area are reduced.
    The proposed low-distortion third-order sigma-delta modulator is simulated in 90-nm 1P9M 1.2-V CMOS process technology. The circuit is operated under 80 MHz clock rate and 2.5 MHz signal bandwidth with a supply voltage of 1.2V. Simulation results show that a 79.62-dB SNDR and 12.93-bit resolution are achieved with 1.16-mW total power consumption under 16-X oversampling ratio. FOM is 29.66 fJ/conversion.

    Abstract (Chinese) i Abstract (English) iii Acknowledgement v Table of Contents vii List of Tables ix List of Figures xi Chapter 1 Introduction 1 1.1 Motivation and Background 1 1.2 Organization for the Thesis 2 Chapter 2 Fundamental of Analog-to-Digital Converter 5 2.1 Introduction of Analog-to-Digital Converter 5 2.1.1 Nyquist rate data converter 7 2.1.2 Oversampling data converter 8 2.2 Sigma-Delta Modulator 9 2.2.1 Oversampling technique 9 2.2.2 Noise-shaping technique 12 2.3 Sigma-Delta Modulator Topologies 14 2.3.1 Single loop topology 15 2.3.2 Multi-stage topology 17 2.3.3 Multi-bit quantization topology 19 2.4 Analysis of the Non-ideality in Sigma-Delta Modulator 20 2.4.1 Finite gain error 20 2.4.2 Integrator settling error 24 2.4.3 Noise in Switched-Capacitor Integrator 25 Chapter 3 Proposed Sigma-Delta Modulation Structure 27 3.1 Low-Distortion ΣΔ ADC 28 3.2 Prior Art of Improved Low-Distortion Sigma-Delta Modulator 31 3.2.1 Relaxed feedback path timing 31 3.2.2 Capacitive Input Feed-forward 32 3.2.3 Opamp sharing technique 34 3.3 Proposed Low-Distortion Sigma-Delta Modulator 35 3.3.1 Proposed architecture 35 3.3.2 Timing diagram 40 3.3.3 Matlab Simulation 41 3.4 Data weighted averaging (DWA) 47 Chapter 4 Implementation in Circuit Level 51 4.1 Loop Filter Design 52 4.1.1 Switched-capacitor integrator 52 4.1.2 Opamp Design 58 4.2 Quantizer Design 64 4.2.1 Asynchronous binary-search ADC 64 4.2.2 Comparator and reference ladder 66 4.2.3 Summary 68 4.3 DWA and DAC circuits design 70 4.3.1 Merged Capacitor Switching 70 4.3.2 DWA circuit design 72 4.4 Clock System 77 4.5 Simulation Results 80 Chapter 5 Conclusions and Future Work 87 5.1 Conclusions 87 5.2 Future Work 88 References 91 Publication and Award 97 Biography 99

    [1] M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol. 38, pp. 475-482, Mar. 2003.
    [2] T. Burger and Q. Huang, “A 13.5-mW 185-Msample/s-ΔΣ modulator for UMTS/GSM dual-standard IF reception,” IEEE J. Solid-State Circuits, vol. 36, pp. 1868–1878, Dec. 2001.
    [3] T. Salo, S. Lindfors, and K. A. I. Halonen, “A 80-MHz bandpass modulator for a 100-MHz IF receiver,” IEEE J. Solid-State Circuits, vol. 37, pp. 798-808, Jul. 2002.
    [4] D. Johns and K. W. Martin, Analog integrated circuit design. New York: John Wiley & Sons, 1997.
    [5] F. Maloberti, Data Converters. Dordrecht, Netherlands: Springer, 2007.
    [6] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York: IEEE Press, 2005.
    [7] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation. New York: IEEE Press, 1997.
    [8] L. Yao, M. Steyaert, and W. Sansen, Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS. Dordrecht, German: Springer, 2006.
    [9] A. Marques, V. Peluso, M. S. Steyaert, and W. M. Sansen, “Optimal parameters for delta sigma modulator topologies,” IEEE Trans. Circuits Syst. II, Analog Digit. Process., vol. 45, Sep. 1998
    [10] R. Schreier, “An empirical study of high-order single-bit delta-sigma modulators,” IEEE Trans. Circuits Syst. II, Analog Digit. Process., vol. 40, pp. 461-466, Aug. 1993.
    [11] R. T. Baird and T. S. Frez, “Improved delta-sigma DAC linearity using data weighted averaging,” in Proc. Int. Symp. Circuits and Syst., May 1995, pp. 13-16.
    [12] S. N. Mohammad and G. C. Temes, “A high-resolution multibit sigma-delta ADC with digital correction and relaxed amplifier requirements,” IEEE J. Solid-State Circuits, vol. 28, pp. 648-660, Apr. 1993.
    [13] R. D. Rio, F. Medeiro, B. P. Verdu, J. D. Rosa, and A. R. Vazquez, CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom: Error Analysis and Practical Design. Dordrecht: Springer, 2006.
    [14] Y Geerts, M. Steyaert, and W. Sansen, Design of Multi-Bit Delta-Sigma A/D Converters. Bosten, MA: Kluwer, 2002.
    [15] N. K. Young, Design of Low-Voltage Low-Power Sigma-Delta Modulators for Broadband High-Resolution A/D Conversion. Ann Anbor, MI: UMI, 2005.
    [16] R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, “Design-oriented estimation of thermal noise in switched-capacitor circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, pp. 2358-2368, Nov. 2005.
    [17] J. Silva, U. Moon, J. Steensgaard, and G. C. Temes, “Wideband low-distortion delta–sigma ADC topology,” Electron. Lett., vol. 37 , pp. 737–738, Jun. 2001.
    [18] K. Lee and G. C. Temes, “Improved low-distortion ΔΣ ADC topology,” Electron Lett., vol. 45, pp. 730-731, Jul. 2009.
    [19] W. Shen and G. C. Temes, “Double-sampled ΔΣ modulator with relaxed feedback timing,” Electron. Lett., vol. 45, pp. 875–877, Aug. 2009.
    [20] Y. Fujimoto, Y. Kanazawa, P. Lo Re and M. Miyamoto, “An 80/100MS/s 76.3/70.1dB SNDR ΔΣ ADC fordigital TV receivers,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp. 76-77.
    [21] I. J. Chao, C. L. Hsu, B. D. Liu, C. Y. Huang, and S. J. Chang, “Behavior model for comparator-based switched-capacitor SDM with relaxed DEM timing,” in Proc. IEEE Int. Conf. Green Circuits and Syst., Jun. 2010, pp. 495-498.
    [22] A. Gharbiya and D. A. Johns, “On the implementation of input feed-forward delta-sigma modulators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, pp. 453-457, Jun. 2006.
    [23] Y.-D. Jeon, S. C. Lee, K. D. Kim, J. K. Kwon, and J. Kim, “A 4.7mW 0.32mm2 10b 30MS/s pipelined ADC without a front-end S/H in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 456–457.
    [24] Y. C. Huang and T. C. Lee, ”A 10-bit 100-MS/s 4.5-mW pipelined ADC with a time-sharing technique,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, pp. 1157-1166, Jun. 2011.
    [25] I. J. Chao, W. C. Chen, C. M. Kuo, B. D. Liu, H. W. Ting, S. J. Chang and C. Y. Huang, “A low-distortion relaxed-DEM-timing delta-sigma modulator without extra adder in the quantizer input,” in Proc. of the 22nd VLSI Design/CAD Symp. Aug. 2011, pp. 480-483.
    [26] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato and A. Baschirotto, “Behavioral modeling of switched-capacitor sigma–delta modulators,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, pp. 352-364, Mar. 2003.
    [27] A. Nilchi and D. A. Johns, “Charge-pump based switched-capacitor integrator for DS modulators,” Electron. Lett., vol. 46, pp. 400-401, Mar. 2010.
    [28] C. Lillebrekke, C. Wulff and T. Ytterdal, ” Bootstrapped Switch In Low-Voltage Digital 90nm CMOS Technology,” in Proc. of the 23rd NORCHIP Conf., Nov. 2005, pp. 234- 236.
    [29] M. Daliri, M. Maymandi-Nejad and K. Mafinezhad, “Distortion analysis of bootstrap switch using Volterra series” IET Circuits, Devices and Syst., vol. 46, pp. 400-401, Dec. 2009.
    [30] Y. Z. Lin, S. J. Chang, Y. T. Liu, C. C. Liu and G. Y. Huang, “An asynchronous binary-search ADC architecture with a reduced comparator count,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, pp. 1829 – 1837, Aug. 2010.
    [31] S. M. Yoo, J. B. Park, S. H. Lee, and U. K. Moon, “A 2.5-V 10-b 120-MSample/s CMOS pipelined ADC based on merged-capacitor switching,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 51, pp. 269-275, May 2004.
    [32] E. Bilhan and F. Maloberti, “A wideband sigma-delta modulator with cross-coupled two-paths”, IEEE Trans. Circuits Syst. I-Regul. Pap, vol. 56, pp. 886-893, May 2009.
    [33] A. P. Perez, E. Bonizzoni, and F. Maloberti, “A low-power third-order ΣΔ modulator using a single operational amplifier” in Proc. IEEE Int. Symp. Circuits and Syst., May 2011, pp 1371-1374.
    [34] N. Maghari, and U. K. Moon, “A third-order DT ΔΣ modulator using noise-shaped bi-directional single-slope quantizer,” IEEE J. Solid-State Circuits, vol. 46, pp. 2882-2891, Dec. 2011.
    [35] L. Bos, G. Vandersteen, P. Rombouts, A. Geis, A. Morgado, Y. Rolain, G. V. Plas and J. Ryckaert, “Multirate cascaded discrete-time low-pass ΔΣ modulator for GSM/Bluetooth/UMTS,” IEEE J. Solid-State Circuits, vol. 45, pp. 1198-1208, Jun. 2010.
    [36] O. Rajaee, T. Musah, N. Maghari, S. Takeuchi, M. Aniya, K. Hamashita, and U. K. Moon, “Design of a 79 dB 80 MHz 8X-OSR hybrid delta-sigma/pipelined ADC,” IEEE J. Solid-State Circuits, vol. 45, pp. 719-730, Apr. 2010.
    [37] K. Lee, M. R. Miller, and G. C. Temes, “An 8.1mW, 82dB delta-sigma ADC with 1.9MHz BW and 98dB THD,” IEEE J. Solid-State Circuits, vol. 44, pp. 2202–2211, Aug. 2009.
    [38] B. Murmann, "ADC performance survey 1997-2012," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.
    [39] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, pp. 731-740, Apr. 2010.
    [40] C. C. Liu, “Design of high-speed energy-efficient successive-approximation analog-to-digital converters, ” Ph.D. dissertation, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R. O. C., 2010.

    下載圖示 校內:2015-08-31公開
    校外:2015-08-31公開
    QR CODE