簡易檢索 / 詳目顯示

研究生: 陳政鴻
Chen, Jheng-Hong
論文名稱: 電源轉換器模組動態響應特性補償設計流程之研究
Study on Design Procedures of Dynamic Response Compensation for Power Converter Modules
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 103
中文關鍵詞: 補償設計流程動態響應特性電源轉換器模組
外文關鍵詞: Design procedures, Dynamic response, Power converter modules
相關次數: 點閱:97下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究電源轉換器模組中回授電路之動態響應補償設計為主要研究對象,傳統設計回授電路流程多使用經驗試誤法獲得較佳補償器元件組合,每當改變參數往往都要重新測試,不但不容易找到最佳補償器參數且花費較多時間成本,才可獲得較好響應速度,因而藉著控制系統分析儀去使得控制系統有依據及快速去設計回授補償器流程,能夠符合在輸入電壓及負載變動下可讓輸出電壓達到良好動態響應;所以循著控制設計法則去設計選擇補償器和所需補償器元件參數值,設計補償系統藉著電路模擬軟體觀察穩定度及響應速度。經由模擬設計最後藉著儀器設備系統去建立對此電路補償量測及相互驗證比較分析差異性;本文因此建立出一套系統化設計控制補償器機制流程,以便能夠快速獲得適合產品及方便量產之元件參數,方可節省成本、縮短研發時程、並增加產品之響應速度。

    This thesis is aimed to study feedback circuit of the power converter modules. Traditional feedback design procedure is used to trial and error method to get better combination of compensator components. In order to reach optimal compensation parameters have to spend much time to change the parameters again and this rely on the accumulation of experience. Using HP 3563A System control analyzer, the designed power module would be possible to ensure the stability and speed of response when the input voltage and load are both varying. According to the rules of controller design, the chosen parameters of compensation are feasted. The establishment of a design process that is checked with the simulation to cost down, shorten development time and increase the stability of the product.

    目錄 中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 研究動機及背景 1 1-2 研究目的 3 1-3 研究方法 4 1-4 論文大綱 5 第二章 電源轉換器模組與控制補償器介紹 6 2-1 前言 6 2-2 電源轉換器模組簡介與應用 6 2-3 直流對直流切換式電源轉換器種類及架構 7 2-4 穩定性條件與補償控制器介紹 9 2-4-1 系統穩定性條件 10 2-4-2 常用之控制補償器介紹 11 2-5 改善動態響應方法之分析 16 第三章 電源轉換器模組控制系統架構及分析 19 3-1 前言 19 3-2 小訊號模型分析 19 3-2-1 降壓型轉換器模型分析 20 3-2-2 升壓型轉換器模型分析 27 3-3 控制迴路系統 31 3-3-1 電壓控制模式分析 32 3-3-2 峰值電流控制模式分析 34 3-4 相位邊限、頻寬與響應速度關係 39 3-5 回授電路補償設計法則 43 3-5-1 K因子控制法則 43 3-5-2 頻域分析補償設計控制法則 46 第四章 設計和模擬結果與分析 50 4-1 前言 50 4-2 利用數學繪圖分析軟體設計 50 4-2-1 設計控制補償電路參數值 51 4-2-2 分析電感、電容與等效串聯阻抗對輸出電壓關係 56 4-2-3 分析輸入電壓範圍變動下穩定度 59 4-3 電路模擬分析 60 4-3-1 降壓型轉換器模擬分析 60 4-3-2 升壓型轉換器模擬分析 63 4-4 電源轉換器模組回授控制器設計流程 66 第五章 系統控制補償結果分析 69 5-1 前言 69 5-2 測試電路規格 69 5-2-1 電路架構規格 70 5-3 量測整體電路 70 5-3-1 量測降壓轉換器整體電路波形 71 5-3-2 量測升壓型轉換器整體電路波形 75 5-4 頻域響應測試結果 79 5-4-1 量測實際電路波德圖 79 5-4-2 頻寬對響應速度之影響 86 5-5 修正補償器後量測結果與分析 87 5-5-1 實際量測電路波形 87 5-5-2 實體量測與模擬電路量測結果差異分析 89 5-6 分析電壓調節率 91 第六章 結論與未來研究方向 94 6-1 結論 94 6-2 未來研究方向 95 參考文獻 96

    [1]DC/DC converter module datasheet,捷拓科技股份有限公司,2014。
    [2]Y. Panov and M. M. Jovanovic, “Design and performance evaluation of low-voltage/high-current DC/DC on-board modules,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 26–33, Jan. 2001.
    [3]W. Chen, G. Hua, and D. Sableet, “Design of high-efficiency, low-profile, low-voltage converter with integrated magnetics,” in Proc. IEEE APEC’97, 1997, pp. 911–917.
    [4]K. Harada and T. Nabeshima, “Large-signal transient response of a switching regulator,” in Proc. IEEE PESC’81, 1981, pp. 388–394.
    [5]H. Watanabe, H. Matsuo, and H. Hatakeyama, “Analysis of the novel soft-switching DC-DC converter with low output voltage,” in Proc. IEEE PESC’00, 2000, vol. 3, pp. 1503–1509.
    [6]T. Kohama, S. Tokimatsu, and H. Shimamori, “Elimination of magnetic saturation due to fast dynamic response in DC-DC converter,” in Proc. IEEE INTELEC’09, 2009, pp. 1–6.
    [7]H. Shimamori, T. Kohama, S. Yamashita, K. Itakura, and T. Ninomiya, “New switching control for synchronous rectifications in low-voltage paralleled converter system without voltage and current fluctuations,” in Proc. IEEE PESC’03, 2003, pp. 150–155.
    [8]N. K. Poon, C. P. Liu, and M. H. Pong, “A low cost dc-dc stepping inductance voltage regulator with fast transient loading response,” in Proc. IEEE APEC’01, 2001, pp. 268–271.
    [9]D. D. Lu, J. C. P. Liu, F. N. K. Poon, and B. M. H. Pong, “A single phase voltage regulator module with stepping inductance for fast transient response,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 417–424, Mar. 2007.
    [10]A. Stupar, Z. Luki, and A. Prodic, “Digitally-controlled steered-inductor buck converter for improving heavy-to-light load transient response,” in Proc. IEEE PESC’08, 2008, pp. 3950–3954.
    [11]A. E. Aroudi, B. G. M. Robert, A. C. Pastor, and L. M. Salamero, “Modeling and design rules of a two-cell buck converter under a digital PWM controller,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 859–870, Mar. 2008.
    [12]V. Yousefzadeh, E. Alarc´on, and D. Maksimovic, “Three-level buck converter for envelope tracking applications,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 549–552, Mar. 2006.
    [13]F. Yu, F. C. Lee, and P. Mattavelli, “A small signal model for V2 control with composite capacitors based on describing function approach,” in Proc. IEEE ECCE’11, 2011, pp. 17–22.
    [14]M. Castilla, J. M. Guerrero, J. Matas, J. Miret, and J. Sosa, “Comparative study of hysteretic controllers for single-phase voltage regulators,” IET Power Electron., vol. 1, no. 1, pp. 132–143, Mar. 2008.
    [15]C. Song and J. L. Nilles, “Accuracy analysis of hysteretic current-mode voltage regulator,” in Proc. IEEE APEC’05, 2005, vol. 1, pp. 276–280.
    [16]M. Castilla, L. Garcia de Vicuna, J. M. Guerrero, J. Miret, and N. Berbel, “Simple low-cost hysteretic controller for single-phase synchronous buck converters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1232–241, Jul. 2007.
    [17]K. K. S. Leung and H. S. Chung, “Dynamic hysteresis band control of the buck converter with fast transient response,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 7, pp. 398–402, Jul. 2005.
    [18]K. Yao, Y. Ren, and F. C. Lee, “Critical bandwidth for the load transient response of voltage regulator modules,” IEEE Trans. Power Electron., vol.19, no. 6, pp. 1454–1462, Nov. 2004.
    [19]J. Quintero, A. Barrado, M. Sanz, and A. Lazaro, “Digital control with asynchronous linear-nonlinear compensator,” in Proc. IEEE APEC’08, 2008, pp. 491–497.
    [20]A. Soto, P. Alou, and J. A. Cobos, “A linear-non-linear digital control breaks bandwidth limitations,” in Proc. IEEE APEC’06, 2006, pp. 724–730.
    [21]G. Feng, E. Meyer, and Y. F. Liu, “A new digital control algorithm to achieve optimal dynamic performance in dc-to-dc converters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1489–1498, Jul. 2007.
    [22]B. Choi, “Step load response of a current-mode-controlled DC-to-DC converter,” IEEE Trans. Aerosp. Electron. Syst., vol. 33, no.4, pp. 1115–1122, Oct. 1997.
    [23]P. Wong, F. C. Lee, X. Zhou, and J. Chen, “VRM transient study and output filter design for future processors,” in Proc. IEEE IECON’98, 1998, pp. 410–415.
    [24]X. Zhou, T. G. Wang, and F. C. Lee, “Optimizing design for low voltage DC-DC converter,” in Proc. IEEE APEC’97, 1997, pp. 612–616.
    [25]X. Ma, X. Yue, H. Wu, and J. Liu, “A novel method of improving the dynamic response of DC-DC converter,” in Proc. IEEE IPEMC’09, 2009, pp. 1367–1371.
    [26]J. Wang and J. Xu, “A novel PWM control method for switching DC-DC converters with improved dynamic response performance,” in Proc. IEEE PEDG’10, 2010, pp. 85–88.
    [27]V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch. part I: Continuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490–496, May 1990.
    [28]A. Florescu, D. Stanciu, D. A. Stoichescu, and C. Radoi, “Design, modeling, simulation and implementation of a switching power supply”, in Proc., IEEE AQTR’08, 2008, vol. 3, pp. 218–223.
    [29]V. Vorperin, “Simplified analysis of PWM converter using model of PWM switch part II: discontinuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 497–506, May 1990.
    [30]S. P. Hsu, A. Brown, L. Rensink, and R. D. Middlebrook, “Modeling and analysis of switching dc-to-dc converters in constant-frequency currentprogrammed mode,” in Proc. IEEE PESC’79, 1979, pp. 284–301.
    [31]V. Grigore, J. Hatonen, J. Kyyra, and T. Suntio, “Dynamics of a buck converter with a constant power load,” in Proc. IEEE PESC’98, 1998, pp. 72–78.
    [32]Y. Yan, F. C. Lee, and P. Mattavelli, “Comparison of small signal characteristics in current mode control schems for point-of-load buck converter applications.” IEEE Trans., Power Electron., vol.28, no.7, pp.3405–3414, Jul. 2013.
    [33]R. B. Ridley, “A new, continuous-time model for current-mode control,” IEEE Trans. Power Electron., vol. 6, no. 2, pp. 271–280, Apr. 1991.
    [34]R. B. Ridley, “A new continuous-time model for current-mode control with constant frequency, constant on-time, and constant off-time, in CCM and DCM,” in Proc. IEEE PESC’90, 1990, pp. 382–389.
    [35]J. H. Lee, H. S. Bae, S. H. Park, and B. H. Cho, “Constant resistance control of solar array regulator using average current model control,” in Proc. IEEE APEC’06, 2006, pp. 1544–1548.
    [36]L. R. Lewis, B. H. Cho, F. C. Lee, and B. A. Carpenter, “Modeling, analysis and design of distributed power systems,” in Proc. IEEE PESC’89, 1989, pp. 152–159.
    [37]R. Redl and N. O. Sokal, “Near-optimum dynamic regulation of DC-DC converters using feed-forward of output current and input voltage with current-mode control,” IEEE Trans. Power Electron., vol. PE-1, no. 3, pp. 181–192, Jul. 1986.
    [38]M. Karppanen, M. Hankaniemi, T. Suntio, and M. Sippola, “Dynamical characterization of peak-current-mode-controlled buck converter with output-current feedforward,” IEEE Trans. Power Electron., vol. 22, no.2, pp. 444–451, Mar. 2007.
    [39]B. Bryant and M. K. Kazimierczuk, “Voltage loop of boost PWM DC-DC converters with peak current-mode control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 1, pp. 99–105, Jan. 2006.
    [40]D. Maksimovic, “Computer-aided small-signal analysis based on impulse response of DC/DC switching power converters,” IEEE Trans. Power Electron., vol.15, no. 6, pp.1183–1191, Nov. 2000.
    [41]A. Davoudi, J. Jatskevich, and P. L. Chapman, “Numerical dynamic characterization of peak current-mode-controlled DC-DC converters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 12, pp. 906–910, Dec. 2009.
    [42]W. H. Ki, “Signal flow graph in loop gain analysis of DC-DC PWM CCM switching converters,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol.45, no. 6, pp. 644–655, Jun. 1998.
    [43]G. Schoneman and D. Mitchell, “Closed-loop performance comparisons of switching regulators with current-injected control,” IEEE Trans. Power Electron., vol. 3, pp. 31–43, Jan. 1988.
    [44]M. Kazimierczuk and R. Cravens II, “Input impedance of closed-loop PWM buck–boost DC–DC converter for CCM,” in Proc. ISCAS’95, 1995, pp. 2047–2050.
    [45]P. J. Liu, Y. K. Lo, H. J. Chin and Y. J. Chen, “Dual-current pump module for transient improvement of step-down DC-DC converter,” IEEE Trans, Power Electron., vol. 24, no. 4, pp. 985–990, Apr. 2009.
    [46]T. A. Smith, S. Dimitrijev and H. B. Harrison, ”Controlling a DC-DC converter by using the power MOSFET as a voltage controlled resistor,” IEEE Trans. Circuits Syst., vol. 47, pp. 357–362, Mar. 2000.
    [47]V. Kurusun, S. G. Narendra, V. K. De, and E. G. Friedman,” Low-voltage swing monolithic dc-dc conversion,” IEEE Trans. Circuits Syst. II, Exp. Briefs., vol. 51, pp. 241–248, May 2004.
    [48]P. J. Liu, H. J. Chiu, Y. K. Llo, and Y. J. E. Chen, “A Fast transient recovery module for DC-DC converters,” IEEE Trans. Ind. Electron., vol. 56, no.7, pp.2522–2529, Jul. 2009.
    [49]K. S. Leung and S.H. Chung, “Dynamic hysteresis band control of the buck converter with fast transient response,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, pp.398–402, Jul. 2005.
    [50]E. Meyer, Z. Zhang and Y.F. Liu, “Controlled auxiliary circuit to improve the unloading transient response of buck converters,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 806–819, Apr. 2010.
    [51]A. R. Brown and R. D. Middlebrook, “Sample-data modeling of switched regulators,” in Proc. IEEE PESC’81, 1981, pp. 349–369.
    [52]K. Yao, M. Xu, Y. Meng, and F. C. Lee, “Design considerations for VRM transient response based on the output impedance,,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1270–1277, Nov. 2003.
    [53]C. J. Chen, D. Chen, M. Lee, and E. K. L. Tseng, “Design and modeling of a novel high-gain peak current control scheme to achieve adaptive voltage positioning for DC power converters,” in Proc. IEEE PESC’08, 2008, pp. 3284–3290.
    [54]T. Ninomiya, M. Nakahara, T. Higashi, and K. Harada: “A Unified analysis of resonant converters,” IEEE Trans., Power Electronics, vol. PE-6, no. 2, pp. 260–270, Apr. 1991.
    [55]E. Figueres, G. Garcera, J. M. Benavent, M. Pascual and J. A. Martinez, “Adaptive two-loop voltage-mode control of DC-DC switching converters”, IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 239–253, Feb. 2006.
    [56]P. Korentzky, Z. Moussaoui, I. Batarseh, S. Hawasly, and C. Kennedy, “Modeling Technique for DC to DC Converters using Weinberg Topology”, in Proc. IEEE SECON’96, 1996, pp. 551–556.
    [57]J. Xu, “An Analytical Technique for the analysis of Switching DC-DC Converters”, in Proc. IEEE ISCAS’91, 1991, Vol. 2, pp. 1212–1215.
    [58]H. Peng, A. Prodic, E. Alarcon, D. Maksimovic, “Modeling of quantization effects in digitally controlled DC–DC converters,” IEEE Trans. Power Electron., vol. 22, no 1, pp. 208–215, Jun. 2007.
    [59]A. Peterchev, S. Sanders, “Quantization resolution and limit cycling in digitally controlled PWM converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 301–308, Jan. 2003.
    [60]B. Patella, A. Prodic, A. Zirger, D. Maksimovic, “High-frequency digital PWM controller IC for DC-DC converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 438–446, Jan. 2003.
    [61]HP 3563A Control Systems Analyzer Operating Manual, vol. 1, Feb. 1990.
    [62]HP 3563A Control Systems Analyzer Operating Manual, vol. 2, Feb. 1990.

    下載圖示 校內:2017-07-30公開
    校外:2017-07-30公開
    QR CODE